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Abstract— In recent years, depth sensors have become more
and more affordable and have found their way into a growing
amount of robotic systems. However, mono- or multi-modal
sensor registration, often a necessary step for further pro-
cessing, faces many challenges on raw depth images or point
clouds. This paper presents a method of converting depth
data into images capable of visualizing spatial details that
are basically hidden in traditional depth images. After noise
removal, a neighborhood of points forms two normal vectors
whose difference is encoded into this new conversion. Compared
to Bearing Angle images, our method yields brighter, higher-
contrast images with more visible contours and more details.
We tested feature-based pose estimation of both conversions
in a visual odometry task and RGB-D SLAM. For all tested
features, AKAZE, ORB, SIFT, and SURF, our new Flexion
images yield better results than Bearing Angle images and
show great potential to bridge the gap between depth data
and classical computer vision. Source code is available here:
https://rlsch.github.io/depth-flexion-conversion.

I. INTRODUCTION AND RELATED WORK

Depth sensors such as LiDAR, Time-of-Flight (ToF) or
stereo camera systems are getting more affordable and are
therefore integrated into an increasing number of robotic
systems and everyday technology. This consequently extends
to the use of depth data, both point clouds and depth/range
images, in a variety of traditional robotic algorithms like
visual odometry (VO). In order to do so, point clouds
or range/depth images need to be aligned to each other.
Beside odometry, Simultaneous Localization and Mapping
(SLAM) [1], (global) localization [2], [3], and place recog-
nition [4] are also relevant fields of application. Creating re-
alistic virtual models requires accurate mapping of visual in-
formation about the environment onto range information [5].
This can only be achieved if cameras and depth sensors
are extrinsically calibrated. With point correspondences, the
calibration becomes a camera pose estimation problem. How-
ever, range images in general are lacking point features [5].
Point cloud and depth image registration (e.g., using Iterative
Closest Points (ICP) [6]) face different challenges like noise
and outliers, only partial overlap, density difference, and
scale variation between sensors [7]. One possible solution
is to process range images and convert them into a new
representation that highlights significantly more details of
the environment than depth images, like the Bearing Angle
(BA) image.
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Fig. 1. Depth images (e.g., Fig. 1b) in general are a poor geometrical
representation of the environment and they usually lack distinguishable
point features. Our proposed Flexion image (e.g., Figs. 1c to 1f) converts
depth images into a more descriptive format and enables them to be used in
traditional computer vision algorithms like feature matching. Depicted are
two consecutive images of fr1/teddy of TUM RGB-D data set [8].

Harati et al. [9] first introduced BA images in order to
segment planar surfaces from range images as features for
3D indoor SLAM. They argue that raw point cloud data
is too redundant to be used in mapping and instead use
BA images to characterize surfaces in a specified direction.
The authors propose region- and edge-based methods, both
utilizing BA images. They criticize the use of (median) filters
for noise reduction when using surface normals. However,
they also suggest noise removal in a later stage. For image
segmentation, they choose horizontal and vertical BA images
and later argue that these two directions suffice for successful
segmentation. The edge-based method applies edge detection
on each BA image separately and a final image is obtained
by combining the results with a logical OR.

In the same year, Scaramuzza et al. [5] introduced BA
images for extrinsically calibrating a camera and a 3D laser
range finder. Instead of introducing landmarks that can be
seen by both camera and laser, they want to use image
features as point correspondences between camera image and
laser point cloud. In doing so, this allows to solve the prob-
lem by using standard camera pose estimation algorithms.
In order to identify point correspondences in the range data,
the authors enhance it by highlighting discontinuities and
orientation changes along specific directions with the help of
a slightly differently defined BA. Their calibration procedure
comprises three steps: converting the range image into a
BA image (in all four directions, but assuming only the
horizontal direction is necessary), manually selecting at least
four point correspondences between the camera image and
BA image, and achieving extrinsic calibration through a
camera pose estimation algorithm and non-linear refinement.



Lin et al. [10] use BA images for registration of point
clouds. They convert them into diagonal BA images, extract
SURF [11] features, and match image pairs. The optimal
rotation matrix is then determined by using a least squares
approximation with 3D points from the top half of the best
corresponding pairs. The point clouds can be aligned based
on the determined relative transformation matrix between the
image pair. Since the proposed algorithm does not require
iterative processing, it reduces computation time significantly
and is ten times faster than generalized-ICP [12].

Due to bad lighting conditions, Zhuang et al. [13] perform
scene recognition based on 3D laser data and BA images
instead of color images. After converting 3D range data into
diagonal BA images, they not only extract local SIFT [14]
features from them but also extract a global spatial feature
from 3D laser scanning data. In order to do so, they use
maximal 2D coverage area in the 3D scan. After conduct-
ing experiments, the authors confirm BA images’ superior
performance in representing detailed scene information.

This paper introduces a novel method called Flexion
image, inspired by BA images, for converting depth data into
a detail-highlighting image representation (Fig. 1). Unlike
BA images, the resulting Flexion image is more descrip-
tive and rotation-invariant, based on the relation between
surface normals calculated from horizontal/vertical and di-
agonal/antidiagonal vectors. The remaining sections of this
paper are organized as follows: Sec. II discusses preliminary
considerations to be taken into account before Sec. III
recapitulates BA images and defines the creation of Flexion
images, Sec. IV compares the performance of these methods
by quantitatively comparing the results of VO of a synthetic
scene and the results of RGB-D SLAM of that synthetic
scene and of real world data, and Sec. V concludes the paper.

II. PRELIMINARY CONSIDERATIONS

Usually, as seen in the literature, BA images are calcu-
lated based on point cloud data. However, RGB-D images
combined with the intrinsics of the sensor are also suitable
for these types of depth conversions. For that reason and
since we want to demonstrate that Flexion images can be
used to register structured point clouds as well, this section
elaborates on some exemplary sensor models of (depth)
cameras and laser scanners. Probably the most common and
most used camera model is the pinhole camera model usually
applied for ordinary RGB or even RGB-D cameras. By
contrast, laser scanners work differently and their principle is
based on angular measures. Hence, equirectangular images
are a natural choice for depicting laser scanner data from
terrestrial laser scanners (TLSs). In the following, both
models are briefly explained.

A. Pinhole camera model

For the sake of simplicity, we assume a simple distortion-
free pinhole camera model with the intrinsic parameters focal
lengths fx, fy , principal point (cx, cy) and skew coefficient s.
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by using the (orthographic) depth value d = Z, which is
stored in a corresponding depth map (or depth image).

B. Spherical camera model
Omnidirectional cameras and TLSs are defined by the

angular measuring resolution in azimuth and polar direction.
The equirectangular projection is a natural choice for de-
picting range and depth data as 2D images. The azimuth
angle ϕ ∈ [0, 2π) is mapped onto the width w and the
polar angle θ ∈ [0, π] is mapped onto the height h of the
image. Depending on the image size, the horizontal angular
resolution ∆ϕ and vertical one ∆θ of the image are:

∆ϕ =
ϕmax − ϕmin

w
, ∆θ =

θmax − θmin

h
(3)

where the horizontal Field of view (FoV) is defined as
[ϕmin, ϕmax] and the vertical is defined as [θmin, θmax].

Let P = (X,Y, Z)
> be a 3D point in camera and laser

frame, respectively. The conversion to spherical coordinates
is given by:
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The back-projection describes the inverse transformation
such that:

ϕ = ϕmin + u∆ϕ , θ = θmin + v∆θ (7)XY
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by using the range value r, which is stored in a corresponding
range image.

III. RANGE DATA CONVERSION

All types of densely structured depth data (point clouds,
range/depth images) can be processed in order to produce
detail-highlighting images of the captured environment. In
order to prevent ambiguities regarding BA image calculation,
we decide on a definition and discuss their peculiarities.
Then, we define the calculation of Flexion images and
compare them to BA images based on their definitions.



A. Bearing Angle image

Harati et al. [9] and Scaramuzza et al. [5] introduce
Bearing Angle images in two slightly different forms at about
the same time. In general, BA images can be created by
assigning each pixel the angle between the laser beam of
a point and the line connecting it to its neighboring point
(Fig. 2). That point can be located on a horizontal, vertical,
or on one of both diagonal lines. For a horizontal BA image,
the neighboring point could be either to the left [9] or to the
right [5] of the point in question. Going forward, we adopt
the definition of Harati et al. [9].

1) Calculation: Let sensor center C, Point Pi,j , and
Pi−1,j be an arbitrary triangle (Fig. 2). While previous
definitions [5], [9] of the BA are based on the cosine theorem,
for consistency reasons, we calculate it directly between
vectors

−→
P i,j and

−−−−−−−−−→
Pi−1,j −Pi,j yielding

βi,j = arccos

(
(Pi,j)

>(Pi,j −Pi−1,j)

‖Pi,j‖2‖Pi,j −Pi−1,j‖2

)
. (9)

The BA value needs to be mapped to a color map. For
feature extraction, a grayscale image with a color depth of
b = 8 bit should suffice. With the Bearing Angle being in
the range β ∈ (0, π) rad, the grayscale value g for a color
depth of b can be calculated with

gi,j =

⌊(
2b − 1

) βi,j
π

⌋
. (10)

2) Characteristics: The definition of the Bearing Angle in
combination with the operating principle of a depth sensor
results in limited rotation and viewpoint invariance. Since
a calculation of BA images depends on a predefined pixel
relationship, a roll rotation of more than 45◦ is equivalent to
a change of this relation. A horizontal BA image can become
a rotated vertical BA image (compare Fig. 3).

As Fig. 4 demonstrates, a rotation in pitch or yaw (depend-
ing on the type of BA image) as well as a translation of the
camera center have an effect on BA images. The larger the
distance of a point to the camera center on a flat surface, the
flatter the laser beams impinge on the surface and, therefore,
the Bearing Angle becomes larger or smaller. This effect
also becomes apparent in a gradient shading of flat surfaces
along the calculation direction of BA images (usually the flat
ground, see Fig. 3).

ri−1,j

ri,j

Pi−1,j
Pi,j

C = (0,0,0)>

β

∆α

Fig. 2. Schematic drawing of two light rays and corresponding Bearing
Angle β. Points Pi−1,j and Pi,j are two adjacent points of a point cloud
with a distance of ri−1,j and ri,j from the sensor center C respectively
and an angular resolution of ∆α.

Fig. 3. Bearing Angle images of a synthetic scene. Due to the nature of
its definition, the Bearing Angle is not invariant to rotation and viewpoint
changes. The depth images were converted with the diagonal (top left to
bottom right) point relation of the Bearing Angle formula.

C

β β′

Fig. 4. Different incidence angles on a flat surface cause Bearing Angles
to differ, resulting in gradient shading of the surface in the image.

B. Flexion image

Instead of using the Bearing Angle to optically improve
laser scans or depth images, Flexion images are based on
surface curvature. Classical methods of obtaining a curvature
measure yield neither a robust nor a high-contrast result (see
Fig. 5). Another method of encoding surface characteristics
are surface normals [15], [16]. Since noise can have a con-
siderable effect on the direction of normals, a pre-processing
step smoothes the data before the Flexion image is created.

1) Pre-processing: When processing depth data, geomet-
ric features like edges or corners are usually most interesting.
These sharp changes need to stay unaltered by a filter. The
widely used median filter [17] is edge-preserving and reduces
salt-and-pepper noise effectively. The filter convolutes an
image, replacing each pixel with the median of its neighbor-
hood, for example an n×m “window” with n,m ∈ N2k+1.
No floating point operations are required and the filter can
be implemented with O(n) [18] time complexity.

2) Calculation: The basic idea of Flexion images is to es-
timate surface curvature by determining two surface normals
based on their own set of neighboring pixels and calculating
their difference. As Fig. 6 illustrates, for each point Pi,j ,
the first normal ~n1,i,j is based on its horizontal and vertical
neighbors (Eq. (11)) and the second normal ~n2,i,j is based
on its diagonal and antidiagonal neighbors (Eq. (12)).

(a) Gaussian curvature (b) Mean curvature (c) Max curvature

Fig. 5. Pixel-wise calculation of Gaussian (Fig. 5a), Mean (Fig. 5b), or
Max (Fig. 5c) curvature yield noisy and low-contrast images.
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Fig. 6. Graphical representation of the Flexion image calculation. Hor-
izontal, vertical (blue) and diagonal, antidiagonal (orange) neighbors of
Pi,j that form the two normal vectors defining the Flexion image. Due to
the curvature of the surface, horizontal/vertical neighbors define a different
normal vector (~n1,i,j , blue) than diagonal/antidiagonal neighbors (~n2,i,j ,
orange, dashed). Thereby, the local shape of the surface influences the angle
between both normal vectors that is proportional to the Flexion Fi,j .

Fig. 7. Flexion images of a synthetic scene. Their appearance is very
plastic and the shading effects give a good sense for depth. The conversion
is rotation invariant. Depicted are the same camera positions as in Fig. 3.

~n1,i,j =
Pi,j–1 −Pi,j+1

‖Pi,j–1 −Pi,j+1‖2
× Pi–1,j −Pi+1,j

‖Pi–1,j −Pi+1,j‖2
(11)

~n2,i,j =
Pi–1,j–1 −Pi+1,j+1

‖Pi–1,j–1 −Pi+1,j+1‖2
× Pi–1,j+1 −Pi+1,j–1

‖Pi–1,j+1 −Pi+1,j–1‖2
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These two normals usually differ and span an angle (Fig. 6).
It is to be noted that both normals ~n1,i,j and ~n2,i,j are not
unit length but each factor of their cross product is. Finally,
the Flexion Fi,j at point Pi,j is defined as

Fi,j =
∣∣(~n1,i,j)

>~n2,i,j

∣∣ , (13)

with |·| being the absolute value. Since the length of the
normals are ‖~n1,i,j‖2, ‖~n2,i,j‖2 ∈ [0, 1], the value of Fi,j is
bound to Fi,j ∈ [0, 1]. This value is then linearly scaled to
a grayscale value analogous to Eq. (10).

3) Characteristics: Contrary to BA images, Flexion im-
ages use all neighboring points for calculation which makes
a Flexion image rotation invariant. A roll rotation of more
than 45◦ only swaps ~n1,i,j and ~n2,i,j which does not change
the final value of F . Fig. 7 demonstrates rotation invariance,
which becomes obvious when comparing to Fig. 3.

Similar to BA images, a flat surface that is approximately
perpendicular to the sensor plane has an almost constant
shading. Flat surfaces at a sharp angle (like the ground

plane) show gradient shading. This is due to perspective
transformation which leads to shorter normals and therefore
darker shades of gray, as Fig. 8 explains. In general, the more
an angle, spanned by two vectors, departs from a right angle,
the shorter the length of the resulting cross-product vector
will be. Since normals ~n1,i,j and ~n2,i,j are not normalized,
F , the result of a scalar product, inherits this attribute.

4) Variations: Due to its simple form, the definition of
Flexion images can easily be modified. In order to decrease
the susceptibility to noise, the neighboring points after next,
e.g., Pi±2,j±2, can be used to form normal vectors. Because
of the 3×3 neighborhood as described in Eqs. (11) and (12),
it could be termed Flexion3×3, in general Flexionn×n with
n being the size of the grid used to form normal vectors. In-
creasing the distance to point Pi,j has two effects: smoothing
the image and widening edges. Fig. 9 illustrates these effects.
Other variations might be normalizing ~n1,i,j and ~n2,i,j or,
similar to BA images, calculating the angle between them.
In order to map the angle to an grayscale image and yield
similar results in terms of color, we calculate:

Fangle i,j = 1.0− 1

π
arccos

(
(~n1,i,j)

>~n2,i,j

‖~n1,i,j‖2‖~n2,i,j‖2

)
. (14)

Figs. 9g and 9h show results of the two aforementioned varia-
tions of the Flexion image creation. Due to the normalization
of the vectors, the gradient shading effect described in Fig. 8
does not occur anymore.

IV. COMPARISON OF FLEXION AND BA IMAGES

In order to cover a widespread assessment of Flexion
and BA images, the first part evaluates results of a simple
VO with multiple feature descriptors and ORB-SLAM3 [19]
as state-of-the-art reference of the “‘Multi-FoV’ synthetic
dataset” [20]. The second part aims at evaluating ORB-
SLAM3 [19] results of parts of the real-world TUM RGB-D
data set [8].

C

C

Pi−1,j+1

Pi−1,j−1

Pi+1,j+1
Pi+1,j−1

Fig. 8. Side and top view of laser beams hitting a flat surface. The angle
between the diagonals (orange) decreases with increasing distance to sensor
center C which results in shorter normals. This yields smaller Flexion
values and creates a gradient shading of flat surfaces. The dotted diagonal
is elongated and parallel shifted to the right to make the change visible.



(a) Flexion3×3 (b) Flexion5×5 (c) Flexion7×7

(d) Flexion9×9 (e) Flexion11×11 (f) Flexion13×13

(g) Flexionangle (h) Flexionnormalized (i) Depth

Fig. 9. Variants of Flexion images. Using a larger distance to calculate
Flexion values results in less noise and wider edges. Figs. 9b to 9f show less
noise, smoother surfaces, and thicker edges respectively. Also, finer details,
e.g., in the monkey head, are lost. Figs. 9g and 9h lack gradient shading of
the ground plane and show, especially in a synthetic scene, little detail.

A. Method and Metrics

Benchmark for VO or SLAM performance is the respec-
tive result obtained with color images (e.g., Fig. 10a) and
the ground truth trajectory. The evaluation compares Flex-
ionn×n images with n ∈ [3, 5, 7, 9, 11, 13] (e.g., Fig. 10c),
Flexionangle, Flexionnormalized, and all four BA image vari-
ations (e.g., Fig. 10d). All converted images are mapped
to 8 bit grayscale and the evaluation is based on absolute
trajectory error (ATE) [8] and relative pose error (RPE) [8].
While ATE measures global consistency, RPE measures
translational drift. We use RMSE for ATE and mean transla-
tional error for RPE, i.e., the default implementation of [8].
In the following tables, the best three results of every column
are bold, the best value is underlined as well. Tabs. III and V
to VIII present the median of eleven ORB-SLAM3 runs.

B. “‘Multi-FoV’ synthetic dataset”

Following a path through a synthetic city scene
(482.59 meters long), the data set [20] provides color images
(Fig. 10a), depth data (Fig. 10b), ground truth, and intrinsics.

1) Visual Odometry: The simple odometry algorithm
uses the default implementation of OpenCV’s (v4.5.5) [21]
AKAZE [22], ORB [23], SIFT [14], SURF [11], and the
default functions knnMatch (with Lowe’s ratio test [14]),
findEssentialMat (with RANSAC [24]), and recoverPose.

Tab. I shows ATE and Tab. II shows RPE for all tested

TABLE I
ATE [m] OF VISUAL ODOMETRY ON SYNTHETIC SCENE

Variant AKAZE ORB SIFT SURF
Flexion3×3 3.99 5.20 7.65 32.03
Flexion5×5 7.87 5.70 6.45 30.47
Flexion7×7 8.70 13.75 9.22 5.10
Flexion9×9 7.13 6.72 7.33 6.10
Flexion11×11 14.07 11.41 44.20 45.33
Flexion13×13 8.66 16.00 53.87 41.48
Flexionangle 40.56 11.05 40.49 31.04
Flexionnormalized 19.29 7.63 36.74
BA horizontal 22.53 13.36 38.87 44.23
BA vertical 11.01 7.44 42.53 35.16
BA diagonal 11.87 8.00 44.13 55.67
BA antidiagonal 16.72 14.70 31.28 27.60
Color 6.19 4.89 3.58 12.24

features and image variations. AKAZE and ORB work best
for depth based images. SIFT yields best color performance
but only works well for Flexion3−9. In contrast, SURF has
the most problems with depth based images, also yields worst
color performance, except for Flexion7,9 that even top color
images. Considering Flexion images only, ATE and RPE
tend to get higher with larger n. Therefore, Flexion11,13

mostly yield highest values, sometimes significantly larger
than Flexion3−9. Flexionangle and Flexionnormalized also yield
usually bad results, except for ORB. BA images peak with
ORB and partially with AKAZE. In general, Flexion3−9

yield better odometry results than BA but similar when using
ORB. It is also noteworthy that color images are not always
the best performing images and are not always among the top
three results. A reason might be that this synthetic scene has
no noise in depth data and possibly repetitive textures. The
usually bad performance of Flexionangle and Flexionnormalized
might be explained by their low-contrast, low-detail images.

2) RGB-D SLAM: Using the converted depth images as
color input for ORB-SLAM3 [19] yields the results presented

(a) Color image (b) Depth image

(c) Flexion3×3 image (8 bit gray) (d) Horiz. BA image (8 bit gray)

Fig. 10. The first image of the “’Multi-FoV’ synthetic dataset” [20] in
different implementations. Figs. 10a and 10b belong to the original data set.
Figs. 10c and 10d are conversions of depth image Fig. 10b.



TABLE II
RPE [m] OF VISUAL ODOMETRY ON SYNTHETIC SCENE

Variant AKAZE ORB SIFT SURF
Flexion3×3 47.22 55.85 54.74 87.19
Flexion5×5 50.45 58.56 46.52 67.76
Flexion7×7 60.51 57.69 56.19 49.47
Flexion9×9 56.08 54.84 52.55 51.91
Flexion11×11 84.75 83.25 98.54 60.87
Flexion13×13 76.05 87.64 110.16 61.05
Flexionangle 91.58 50.47 68.22 82.45
Flexionnormalized 69.06 54.65 69.46
BA horizontal 69.87 49.62 92.06 69.77
BA vertical 57.97 50.05 71.96 80.24
BA diagonal 68.97 55.55 76.97 104.52
BA antidiagonal 55.91 48.38 75.10 79.71
Color 56.11 53.03 51.36 56.95

TABLE III
RESULTS OF RGB-D SLAM ON SYNTHETIC SCENE

Variant ATE [m] RPE [m]
Flexion3×3 33.64 40.27
Flexion5×5 25.53 31.24
Flexion7×7 12.74 15.79
Flexion9×9 7.55 8.67
Flexion11×11 7.14 8.84
Flexion13×13 7.16 8.86
Flexionangle 39.95 51.00
Flexionnormalized 19.01 22.26
BA horizontal 41.37 54.17
BA vertical 27.00 32.27
BA diagonal 30.11 35.49
BA antidiagonal 31.39 37.01
Color 5.25 6.97

in Tab. III. Probably due to noise, a larger n in Flexion
images has a positive effect on ATE and RPE. Flexion7−13

yield better or similar results and are, except for color, the
best performing images. In opposition, the remaining Flexion
variants yield worse results compared to the VO on synthetic
data. BA images got a worse ATE and a better RPE than
before. While the results were similar to Flexion before, with
ORB-SLAM3 the performance is notably worse. This might
be due to stricter constraints of the SLAM algorithm.

C. TUM RGB-D data set

Flexion and BA images were tested with part of the TUM
RGB-D data set [8] in four smaller and six larger scenarios.
Tab. IV shows ground truth trajectory length for all used
scenes. Tabs. V and VII show ATE and Tabs. VI and VIII
show RPE of the small and large scenes respectively.

Flexionangle and Flexionnormalized achieved such bad results
that ORB-SLAM3 often failed to create a map and therefore
these algorithms are omitted below. The first two scenes
share the same desk setup. Scene fr1/xyz yields small errors
among all image types. A more complex trajectory on the
same desk (fr1/desk) shows that Flexion images beat not only
BA but also color images. Much clutter might lead to wrong
matches in color images but provide much spatial details
that benefit Flexion images. Scene fr1/floor has only little
structure and therefore proves to be the most challenging
for depth based images. In fr1/room, only Flexion5,7 yield
comparable results to BA images. Over all, Flexion5,7 yield
the best performance among all depth based images.

TABLE IV
GROUND TRUTH TRAJECTORY LENGTH [m] OF TUM RGB-D [8]

Scene fr1/xyz fr1/desk fr1/floor fr1/room
Length 7.112 9.263 12.569 15.989
fr2/large fr3/long of fr2/pioneer
with loop fice househ 360 slam slam2 slam3
39.111 21.455 16.118 40.380 21.735 18.135

TABLE V
ATE [cm] OF RGB-D SLAM ON TUM RGB-D 1/2

Variant fr1/xyz fr1/desk fr1/floor fr1/room
Flexion3×3 3.82 28.41 83.16 130.89
Flexion5×5 3.15 21.25 64.96 69.27
Flexion7×7 3.11 14.25 66.26 62.37
Flexion9×9 3.15 9.18 75.19 122.43
Flexion11×11 3.16 8.82 74.13 129.73
Flexion13×13 3.11 9.53 75.99 106.49
BA horizontal 2.64 67.64 75.68 87.96
BA vertical 2.84 67.78 74.76 69.06
BA diagonal 3.02 61.91 86.48 73.59
BA antidiagonal 2.73 54.45 83.55 70.75
Color 1.04 40.68 4.70 7.30

In general, Flexion images perform better than BA images
in the smaller scenes whereas results in the larger scenes are
more balanced. Scenes fr2/large with loop and fr3/long of-
fice houshold yield relatively good results. In the first scene,
Flexion3−5 yield best results, comparable with three out of
four BA variants. In the second scene, Flexion performs
better than BA and minimally peaks with n = 7. BA perfor-
mance is worse and more unstable. Scenes fr2/pioneer 360,
slam2, and slam3 yield the worst results (compared to their
ground truth trajectory length) with slam2 being the most
challenging scene as even color images yield their worst
result. With 360, Flexion peaks at n = 9 with BA being
worse, slam shows roughly identical results of all depth based
methods, slam2 results are in a similar range with BA being
marginally better than Flexion, and slam3 produces the worst
results with Flexion5−9 being better than BA.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a novel method to convert depth data
into a geometrically more descriptive format than depth
images. While Bearing Angle images are ambiguously de-
fined and lack large rotation invariance, our Flexion images
eliminate these drawbacks and prove better performance
regarding visual odometry and RGB-D SLAM. The visual

TABLE VI
RPE [cm] OF RGB-D SLAM ON TUM RGB-D 1/2

Variant fr1/xyz fr1/desk fr1/floor fr1/room
Flexion3×3 4.87 37.05 148.76 152.11
Flexion5×5 4.00 28.35 129.13 98.90
Flexion7×7 3.98 19.39 124.78 85.81
Flexion9×9 4.02 13.87 122.34 149.60
Flexion11×11 4.03 12.98 120.53 156.52
Flexion13×13 3.98 14.29 122.23 120.58
BA horizontal 3.43 78.70 136.50 124.39
BA vertical 3.67 78.56 122.76 93.94
BA diagonal 3.77 72.10 129.49 101.77
BA antidiagonal 3.55 66.29 120.89 90.50
Color 1.45 48.55 6.24 11.31



TABLE VII
ATE [cm] OF RGB-D SLAM ON TUM RGB-D 2/2

Variant

fr2/ fr3/
large long fr2/pioneer
with office 360 slam slam2 slam3loop househ

Fl
ex

io
n

3×3 112.51 77.78 182.14 193.81 215.72 191.96
5×5 112.74 64.65 173.42 187.00 215.59 181.59
7×7 138.47 57.36 159.36 189.14 215.86 180.19
9×9 135.98 61.35 155.12 187.69 209.96 173.70
11×11 136.35 61.68 156.04 191.79 210.77 175.66
13×13 136.45 67.29 158.24 184.22 207.38 162.06

B
A

horiz. 113.68 94.87 191.93 192.27 217.31 195.90
vert. 112.87 80.48 – 194.37 205.25 192.58
diag. 112.87 192.08 199.31 192.49 208.10 190.98
antid. 142.11 72.79 196.08 190.69 212.55 192.80
Color 18.47 12.37 12.25 137.84 156.62 111.26

TABLE VIII
RPE [cm] OF RGB-D SLAM ON TUM RGB-D 2/2

Variant

fr2/ fr3/
large long fr2/pioneer
with office 360 slam slam2 slam3loop househ

Fl
ex

io
n

3×3 141.11 93.42 221.44 243.68 276.94 259.86
5×5 143.49 75.81 211.24 239.85 284.03 239.41
7×7 211.79 65.91 195.12 236.84 282.42 241.34
9×9 251.07 70.41 186.37 242.51 282.05 246.34
11×11 254.59 71.86 187.42 243.04 285.05 252.73
13×13 159.37 74.04 193.47 243.54 281.85 265.85

B
A

horiz. 141.68 122.34 239.75 239.23 274.45 274.12
vert. 137.60 92.36 – 248.65 269.44 252.70
diag. 138.87 188.75 251.55 239.08 266.47 250.39
antid. 168.77 87.81 246.73 238.23 277.49 263.00
Color 28.56 17.15 19.86 112.87 213.78 83.88

odometry showed that SIFT and SURF perform mediocre
while AKAZE and ORB allow for better and partly color
image-like performance. ORB-SLAM3 on parts of the TUM
RGB-D data set reveals that, depending on the unevenness
and size of the environment, Flexion7×7 or Flexion9×9 might
be a good alternative when color images are not available.
Furthermore, Flexion images seem to work best in smaller
areas since spatial features are more visible and therefore
contribute more to the level of detail in the image.

The results are promising and Flexion images might be
the foundation to exploit range/depth image’s full poten-
tial. In order for the proposed method to bridge the gap
between point clouds and classical computer vision, further
evaluation and research towards (global) localization, SLAM,
and for example Structure from Motion (SfM) need to
be conducted. Further variations of image creation could
also be investigated, e.g., including center point Pi,j into
calculation. Since classical ICP relies on establishing explicit
point correspondences, point-cloud-registration might also be
a field Flexion images could explore.
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