
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Robotics, Cognition, Intelligence

Multitarget Multisensor Motion
Tracking of Vehicles with Vehicle
Based Multilayer 2D Laser Range

Finders

Robert Lösch

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Robotics, Cognition, Intelligence

Multitarget Multisensor Motion
Tracking of Vehicles with Vehicle
Based Multilayer 2D Laser Range

Finders

Multi-Target-Multi-Sensor-Motion-
Tracking von Fahrzeugen mit

fahrzeugbasierten, mehrschichtigen
2D-Laserentfernungsmessern

Author: Robert Lösch
Supervisor: John Dolan
Advisor: Prof. Matthias Althoff
Submission Date: 15.01.2017

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.01.2017 Robert Lösch

Acknowledgments

This thesis summarizes my research during the last six month at the Robotics
Institute (RI) of the Carnegie Mellon University. This thesis would not have been
possible without my supervisor John M. Dolan who made my stay at Carnegie Mellon
possible. I am grateful for his proof-reading, his constructive criticism, and advice. I
would also like to thank my advisor Prof. Matthias Althoff for introducing me to Mr.
Dolan and for his support.

I am also thankful for Chiyu Dong for always having an answer to all my questions
and, including Wenhao Luo, for the additional test drive. I am also grateful for the
other students and Ph.D. candidates for the great atmosphere in the office.

Finally, I would like to thank my parents for their enduring support which brought
me into the position of writing this thesis and I would like to thank Lisa for her
sympathy and understanding when I had hard times.

Abstract

For tracking, autonomous vehicles often use 3D laser range finders (LRFs), which are
expensive. In order to make autonomous cars affordable as a mass product, we use
multiple, more affordable 2D LRFs for tracking and implement an algorithm with
the goal of achieving a similar performance. Our tracking algorithm comprises the
following steps: Data preprocessing, segmentation, classification, feature extraction,
data association, and track management. To compensate the information reduction,
we re-use track information and focus on reducing over-segmentation and effects
of the shape change problem. We test the algorithm on own labeled data and
training data sets of “The KITTI Vision Benchmark Suite” with the CLEARMOT and
MT/PT/ML metrics. In addition, we test specific properties with specific scenarios.
Our algorithm obtains a MOT accuracy, which reflects the amount of correctly
detected objects, of 0.79 on our own and negative values on the KITTI data sets.
Obtained MOT precision, which is an averaged detection precision, is around 60
percent on all data sets. Out of all tracks, 47.83 percent are mostly tracked on our own
data and zero percent on KITTI data sets. Our algorithm for tracking multiple objects
with multiple moving 2D LRFs does not reach 3D performance. Improvements of
feature extraction and especially classification to distinguish between vehicle and
non-vehicle objects would boost its performance.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Objective . 2
1.3 Limitations . 2
1.4 Structure . 2

2 Related Work 3
2.1 DATMO Research . 3
2.2 Segmentation . 6
2.3 Classification . 8
2.4 Feature Extraction . 8
2.5 Deficiencies and Suggestions for Future Research 9
2.6 Implication . 10

3 Autonomous Driving Research Platform 11
3.1 Autonomous Driving Research Vehicle 11
3.2 LIDAR Sensors . 12
3.3 Pre-Processing Data Points . 15

3.3.1 Sensor Fusion . 15
3.3.2 Deleting Ground Points . 15

3.4 Differences Compared to One One-Layered LRF 16

4 Tracking Algorithm 18
4.1 Preprocessing . 19
4.2 Segmentation . 19
4.3 Classification Step . 20

4.3.1 Linear Regression . 22
4.3.2 Classification . 22
4.3.3 Post-Processing . 23

v

Contents

4.4 Feature Extraction Step . 27
4.4.1 Orthogonal Regression . 27
4.4.2 Feature Extraction . 29
4.4.3 Post-Processing . 35

4.5 Data Association . 36
4.5.1 Kalman Filter . 37
4.5.2 Data Association . 39
4.5.3 Reference Point and Handling of View Change 40

4.6 Tracking . 41
4.6.1 Track Creation . 41
4.6.2 Track Update . 41
4.6.3 Ambiguity Handling . 43
4.6.4 Track Deletion . 43

5 Evaluation 44
5.1 Methodology . 44

5.1.1 Labeled Data as Ground Truth 44
5.1.2 Special Scenarios . 45

5.2 Quality Metrics . 46
5.2.1 Frame-Based Quality Metrics . 47
5.2.2 Track-Based Quality Metrics . 47

5.3 Results . 48
5.3.1 Labeled Data as Ground Truth 48
5.3.2 Special Scenarios . 52
5.3.3 Time Consumption . 54

6 Discussion 57
6.1 Discussing the Results . 57

6.1.1 Own Labeled Data . 57
6.1.2 The KITTI Vision Benchmark Suite 59
6.1.3 Scenario 1 - Velocity . 61
6.1.4 Scenario 2 - Changing Viewing Angle 61
6.1.5 Scenario 3 - Occlusion . 64

6.2 Possible Sources of Errors . 64
6.3 Time Consumption . 65

7 Conclusion 68

Bibliography 72

List of Abbreviations 79

List of Symbols 81

vi

1 Introduction

In this thesis, we attempt to implement an algorithm to track multiple objects based
on data from multiple, moving two-dimensional (2D) laser range finders (LRFs)
which ideally achieves a similar performance as a three-dimensional (3D) tracking
algorithm. In the following sections, we want to address why it is important to
contribute to the research of 2D Light Detection and Ranging (LIDAR) tracking, what
the objective of this thesis is, what its limitations are, and how it is structured.

1.1 Motivation and Problem Statement

Car manufacturers, universities, and third party service providers for autonomous
driving are conducting research on how to let a vehicle drive autonomously through
traffic. In recent years back to the 2007 Urban Challenge organized by the Defense
Advanced Research Projects Agency (DARPA), autonomous vehicles often used 3D
LIDAR combined with other sensors such as cameras (e.g. [1]) or radar (e.g. [2]). In
the coming years, autonomous vehicles are supposed to be produced for the mass
market as a product or a service. Unfortunately, 3D LRFs are expensive and can
easily cost $70,000 [3]. In 2014, Power and Others [4] conducted a study in which
24 percent of the respondents said that they are willing to pay up to $3,000 for an
autonomous driving mode in their next vehicle. That compares with 21 percent in
2013 and 20 percent in 2012. Therefore, the current technology cost and the market
demand do not fit. The technology that is used to enable autonomous driving needs
to become less expensive or be replaced with a more affordable solution. 3D LIDAR
sensors may become significantly cheaper in the future [5] but estimates of when
autonomous cars will become available on the market start at 2018 and fluctuate
around 2020 [6] already. Until 3D LRF are cheap enough, one solution could be
using multiple 2D LIDARs instead. Of course, 2D sensors provide significantly less

1

1 Introduction

information compared to 3D sensors. That is why the challenge is to achieve a similar
performance with 2D sensors to enable autonomous driving and keep it affordable for
customers. In addition to the cost factor, commonly occurring problems of tracking
with (moving) LRFs, like over-segmentation or the shape change problem, are not yet
solved to a satisfying degree.

1.2 Objective

Therefore, the purpose of this thesis is to implement a tracking algorithm based
on the information gathered by multiple 2D LRFs. The algorithm shall be capable
of tracking multiple objects, namely cars and trucks, around the vehicle and it is
only allowed to use 2D LIDAR information from multiple sensors and the Global
Positioning System (GPS) signal of the ego-vehicle. The vehicle and therefore the
sensors are moving, and all data points which are processed are real-world data with
outliers and noise. Since it is desirable that the algorithm performs similarly to a 3D
LIDAR tracking algorithm, the effect of common problems like over-segmentation
should be reduced. The algorithm shall be implemented in MATLAB [7].

1.3 Limitations

Since the algorithm is implemented in MATLAB, it is not necessary to prove real-time
capabilities and the algorithm does not need to be implemented in C++ or run on the
research platform the LIDAR points were obtained from. However, in order to get an
idea of feasibility, we estimate real-time speed based on the MATLAB performance.

1.4 Structure

After compactly mentioning related work and deficiencies of current methods in
chapter 2, we give an overview of the autonomous driving research platform and
the used LRFs in chapter 3. Chapter 4 explains the implemented algorithm in detail.
We continue with the explanation of performance testing and present the results in
chapter 5. In chapter 6, we discuss the results and conclude the thesis in chapter 7.

2

2 Related Work

In recent years, a lot of research has focused on detection and tracking of moving ob-
jects (DATMO), especially with 3D laser measurement systems or laser measurement
sensors (LMS). Before that, 2D sensors were used for tracking and detection. DATMO
consists of several parts: Segmenting a scan to get objects, optionally classifying them
into different classes, and extracting features of every object to finally track their
movement. While some papers are about the whole DATMO algorithm, some only
focus on a specific part like LIDAR clustering or feature extraction. We subsequently
present related work about the whole DATMO algorithm, segmentation, classification,
feature extraction, and finally summarize the mentioned deficiencies and what we
want to improve.

2.1 DATMO Research

Prassler et al. [8] used only 2D LIDAR information to detect and track numer-
ous pedestrians in crowded environments in order to navigate a mobile vehicle
autonomously through them. The system detects movements due to changes in
successive sequences of temporal lattice maps. In order to distinguish whether a
change was caused by motion of a dynamic object or due to ego-motion, the system
performs sensor motion estimation parallel to motion detection and tracking.

In [9], simultaneous localization and mapping (SLAM) creates the map which
is used to detect moving objects. Wang et al. performed SLAM with DATMO to
perform detection and tracking at high speeds. They segment a new scan by a simple
distance threshold (Dthd) and transform the surrounding map first into the laser
scanner’s coordinate frame and second into polar coordinates. In this way, moving
points are easily detectable. The system uses the interacting multiple model (IMM)
algorithm to model and predict an object’s motion and it uses multiple hypothesis
tracking (MHT) to improve detection and data association.

3

2 Related Work

The algorithm of Mendes et al. [10] implements a collision avoidance system which
uses the computed time to collision (TTC) of every moving object. The DATMO
part consists of three parts: First, scan segmentation, which is based on the distance
between two consecutive points of the scan. To reduce over-segmentation, small
and close segments are merged assuming they represent two legs of one person.
Also, large lines are merged provided they might belong to the same object. Second,
object classification, which uses a voting scheme of several object properties which
results in a classification confidence level. Third, object tracking using a Kalman
filter (KF) that allows for the object type and assumes constant velocity and white
noise acceleration. In the case of ambiguous segment-track-assignments, distance,
dimension, orientation, occluded time, and lifetime are used to solve the discrepancy.

MacLachlan and Mertz [11] built a system that focuses on accurate motion estimates
and was used as a collision warning system. After segmenting the scan, they extracted
stable features, namely right-angle corners. The subsequent data association detects
spatial overlap between the predicted track and segmented rectangle. The tracker
estimates the position, velocity, acceleration, and turn rate of the objects using
a Kalman filter while compensating for changes due to ego-motion. When using
multiple sensors, their scans are processed separately and, if necessary, merged during
data association. After an extensive real-life test, the authors conclude acceptable
performance for collision warning.

Premebida et al. [12] used not only 2D LIDAR but also a camera to track pedestrians
and vehicles. The information from both sensors was fused to facilitate segmentation
and object detection. The system classifies objects into cars or pedestrians by classify-
ing objects separately in laser and vision space and combining them afterwards. For
tracking, they used a “multi-independent Kalman filter strategy” which is performed
in Cartesian space.

Multiple sensors, including LIDAR and GPS, were used by Gao and Coifman [13]
to detect and track cars, pedestrians, road boundaries, or other objects in traffic.
Their system groups LIDAR measurements into categories (“V”, “H”, “L”, “O”)
and classifies those as vehicles or fixed objects. It tracks vehicular objects using
independent one-dimensional two-state Kalman filters for vertical and horizontal
movements. The classification into vehicles or fixed objects (road boundaries) is based
on constructing a density image. All points are transformed into world coordinates
and averaged with older scans, resulting in areas with high density caused by fixed

4

2 Related Work

objects. In the end, the authors suggest combining tracking and clustering to overcome
the over-segmentation problem and they encountered classification problems due to
oddly shaped clusters and GPS errors.

Darms et al. [2] realized that LIDAR alone does not provide enough information to
track all objects around their vehicle. Therefore, they describe the obstacle detection
and tracking algorithm used by “Boss”, Carnegie Mellon University’s winning entry
in the 2007 DARPA Urban Challenge. They fused Radio Detection and Ranging
(RADAR) and LIDAR to achieve both long-range detection and short-range shape
estimation. However, there is no single model that can be used properly across all
sensors because of different return and noise characteristics. That is why they used
multiple models and proposed a novel adaptive model-switching mechanism which
chooses the most informative tracking model depending on the quality of the sensors.
As future work, the authors suggest focusing on improving low-level sensor details
such as feature-extraction algorithms for LIDAR.

Table 2.1 shows a summary of basic characteristics of the aforementioned papers.
An overview with similar structure containing more papers can be found in [14].

Table 2.1: Summary of basic criteria of DATMO papers.

Reference Out-
door

Object types
Dimension SensorCars Pedes- Other

trians Objects
Prassler et al. [8] X 2 a

Wang et al. [9] X X 2 1 c
2 b

Mendes et al. [10] X X X X 2 a
MacLachlan et al. [11] X X X 2 a
Premebida et al. [12] X X X 2 a
Gao and Coifman [13] X X X X 2 f

Darms et al. [2] X X
2 b
2 d
3 e

Legend: a = SICK LMS200; b = SICK LMS291; c = SICK LMS221;
d = IBEO AlascaXT; e = Velodyne HDL-64E; f = LIDAR

5

2 Related Work

2.2 Segmentation

The very first thing to handle in DATMO with LIDAR is a point cloud. In order to
detect vehicles, segmentation or clustering groups points which may belong to the
same object into segments or clusters such that points within one cluster are closer to
each other than to points of another cluster. Based on that, vehicles can be detected
and processed further by for example a classification algorithm. The following papers
mostly or entirely focus on the segmentation of LIDAR points.

Borges and Aldon [15] developed a fuzzy clustering algorithm in a split-and-
merge framework which they use for line and feature extraction. After comparison
with the classical line tracking (LT) and iterative end-point fit (IEPF) in a simulated
environment, the algorithm shows a good performance.

In [16], the same authors test their algorithm in a real environment. Their algorithm
outperforms LT and IEPF again, but they conclude that robustness can only be ex-
pected to a certain level of outliers. As line extractors they developed two “breakpoint
detectors”: an adaptive and a KF-based detector.

Sparbert et al. [17] performed lane detection and street-type classification just using
LIDAR data. They use the same segmentation approach as [18], which is based
on a simple distance threshold (Dthd). This threshold is based on the minimum
Euclidean distance between two consecutive points (see Table 2.2) and therefore takes
the divergence of laser beams into account.

Adams [19] implemented an on-line algorithm which performs segmentation and
feature extraction at once. It detects surface discontinuities and is based on changes
of the spatial gradient considering the last three points.

The report of Premebida and Nunes [22] mentions all the authors above. Premebida
and Nunes summarize and compare many segmentation and feature (primitives)
extraction algorithms for 2D LIDAR points. They proposed two groups of segmenta-
tion algorithms: point-distance-based segmentation (PDBS) and Kalman-filter-based
segmentation (KFBS). PDBS algorithms separate points when the (Euclidean) distance
between them exceeds a threshold: If D(ri, ri+1) > Dthd then segments are separated
else segments are not separated, where D is distance and r is radius, i.e., the distance
between the LRF and the point. Table 2.2 shows how the aforementioned papers
calculate their distance threshold, with Da being the angular resolution of the LRF
and f being the angle of the object. KFBS algorithms use KFs or extended Kalman

6

2 Related Work

Table 2.2: PDBS Methods
Author Remarks
Dietmayer
et al. [18]

Dthd = C0 + C1min{ri, ri+1}; C1 =
p

2(1 � cos Da) = D(ri, ri+1)/ri;
C0 constant parameter used for noise reduction

Santos
et al. [20]

Dthd = C0 + C1min{ri,ri+1}
cot(f)[cos(Da/2)�sin(Da/2)]

f aims to reduce the dependency of the segmentation
with respect to r; C0/1 same as in [18]

Lee [21] Dthd =
��� ri�ri+1

ri+ri+1

���

Borges
and Aldon
[16]

Dthd = ri
sin Da

sin(l�Da) + sr

l is an auxiliary parameter; sr is a residual variance

filters (EKFs) to predict the next LIDAR point. Based on that prediction, the segment
is separated or not according to a threshold or something similar. Table 2.3 shows the
KFBS algorithms mentioned in [22].

The next two papers describe segmentation algorithms for 3D LIDAR points.
Klasing et al. [23] enhance the classical k-nearest neighbor (k-NN) algorithm into a
radially bounded nearest neighbor (RBNN) graph, which performs better than k-NN.
Instead of connecting k neighbors, the algorithm connects all neighbors within a
certain radius.

Held et al. [24] combine spatial, temporal, and semantic information and were able
to achieve a more robust system and significantly reduce under-segmentations and
over-segmentations while running in real-time.

General segmentation algorithms not specific to LIDAR, comparisons, and further
information about clustering can be found in [25] and [26].

Table 2.3: KFBS Methods
Author Remarks

Borges and Aldon
[16]

rk+1 = rk + Da drk
da

drk+1
da = drk

da

Roumeliotis and
Bekey [27]

extended Kalman filter (EKF),
EKF’s Validation Gate

Adams [19]
EKF, based on spatial gradient

rk+2 = rkrk+1
(2rk cos Da)�rk+1

7

2 Related Work

2.3 Classification

After creating a list of segments, they can be classified into different classes to simplify
further processing or sort segments out. As some papers focus on segmentation,
others focus on classifying clusters of LIDAR points. For example, Sparbert et al. [17],
already mentioned in section 2.2, classify objects like cars, trucks, and bicycles. They
accomplish this by comparing the static and dynamic states of each object with stored
a priori knowledge, which reveals the object’s type with a certain probability.

Nashashibi and Bargeton [28] use mainly geometrical information but also occlu-
sion reasoning, sensor specifications, and tracking information in order to classify an
object. After classifying it, the confidence level is estimated using the classification,
geometrical configuration, and tracking duration.

2.4 Feature Extraction

After segmenting and classifying, feature extraction usually takes place. As already
mentioned in section 2.2, Borges and Aldon [15] perform feature extraction and seg-
mentation simultaneously. They basically perform line extraction on the whole range
image. By splitting lines at characteristic points, they get their feature information
and separate segments. In [16], the authors introduce two new methods for detecting
line break points (see Table 2.2 and 2.3) and test their algorithm on real data.

Vandorpe et al. [29] build a dynamic map using geometrical primitives, namely
lines and circles. A point is added to a line when the distance to the last added point,
the distance to the line, and the change in angle between the last and the current
point lie within a threshold. In addition, at least three points are necessary to form a
line. If one of these conditions does not hold for at least two consecutive points, the
algorithm checks whether these points form a cluster and can be represented by a
circle. To add a new point to a circle cluster, its distance to the circle center has to lie
within a threshold. The parameters describing the primitives are also provided with
uncertainties.

8

2 Related Work

2.5 Deficiencies and Suggestions for Future Research

Some authors of the aforementioned work mentioned their problems and what they
want to continue researching on. Those who did are mentioned in Table 2.4

Table 2.4: Deficiencies and suggestions for future research of related work
Author Part Deficiency

Prassler et al.
[8]

Tracking Tracking method may lose moving object due to
occlusion effects.

Prassler et al.
[8]

Future work Integrating fast matching methods to disam-
biguate moving objects based on their shape;
incorporating a motion prediction algorithm to
cope with the problems caused by occlusion or
by crossover tracks; facilitating motion planning
in time-varying environments

MacLachlan
and Mertz [11]

Motion
detection
(Moving
Sensor)

Object shape appears to change as different as-
pects of the object come into view, which can eas-
ily be misinterpreted as motion (shape change
problem).

MacLachlan
and Mertz [11]

Motion
detection

Maintaining an occupancy grid is computation-
ally expensive.

Premebida
et al. [12]

Stability and
Consistency

“Voting schemes and methods based on ‘heuris-
tic’ rules have the disadvantage of not having a
self-consistent mathematical framework in order
to support its stability and consistency.”

Premebida
et al. [12]

Stability and
Consistency

SICK LMS200 has poor capacity to detect cars
in some circumstances in outdoor scenarios far
from 15 meters.

Gao and Coif-
man [13]

Segmentation Over-segmentation problem; Coping with
irregular-shaped vehicles that occasionally ap-
pear.

9

2 Related Work

Gao and Coif-
man [13]

Classification Difficulty to accurately differentiate between ve-
hicles and non-vehicle objects in the classification
process. (partial occlusion problems, detection
errors, and noise)

Darms et al. [2] Information
Acquisition

“No sensor could provide all the information
necessary to track the vehicles.”

Darms et al. [2] Future work,
Feature
Extraction

Improving the low-level sensor details. “More
intelligent feature-extraction algorithms could
help to more robustly reject spurious returns
caused, e.g., by bushes.”

Borges and Al-
don [16]

Future work,
Robustness

Improving reliability in local map building using
segmentation with complementary reasoning at
a higher level.

Premebida and
Nunes [22]

General
Segmentation
Performance

PDBS methods do not adapt dynamically.

Premebida and
Nunes [22]

General
Performance

Real-time capability (embedded systems)

Klasing et al.
[23]

Performance,
Feature
Extraction

Balancing between more powerful algorithms
and real-time capability; extraction of geometry

2.6 Implication

Since we attempt to achieve approximately 3D performance, we will pay particular at-
tention to three problems. First, our algorithm shall be able to continue an interrupted
track by estimating movements during scans in which the track is occluded. Second,
it is often misinterpreted as motion when moving sensors see different aspects of
a standing object. Third, noise, occlusion, or badly parameterized segmentation
algorithms can all cause overly segmented objects. By merging segments that belong
to the same object, we want to further improve tracking performance.

10

3 Autonomous Driving Research
Platform

The LIDAR data used in this master’s thesis were obtained from an autonomous
driving research platform described in [30]. The subsequent sections briefly describe
this platform, what kind of LIDAR sensors are used, and what kind of raw data
pre-processing takes place already on the car.

3.1 Autonomous Driving Research Vehicle

The research platform is based on a 2011 Cadillac SRX. The vehicle was electronically
and mechanically modified and equipped with sensors of several types to enable
autonomous driving features. A more detailed description of these modifications is
provided in [30]. The vehicle is, among other things, equipped with six LRFs and
two GPS sensors. The vehicle and the sensor distribution are depicted in Figure 3.1.
For implementing our tracking algorithm, we only use information obtained from all
LIDAR sensors and the GPS2 sensor which is an Applanix POS LV [31]. The six LRFs
are distributed in such a way that the area all around the vehicle is covered, giving it
a 360-degree coverage. The area in driving direction is covered more densely than
other parts, as depicted in Figure 3.2a. Since the horizontal field of view (FoV) of the
sensors is smaller than 180�, there are blind spots around the car in its immediate
vicinity (Figure 3.2b). They are small enough to avoid overlooking a car but still affect
tracking negatively.

11

3 Autonomous Driving Research Platform

Fig. 8: Data visualization of the integrated LIDARs, radars
and camera

informative, especially for detecting lane markings, signs and
traffic lights with texture and color features. However, false-
positive and recognition failure rates are much higher for
vision than for LIDAR and radar.

Based on the features of these three sensor types, a hybrid
perception system was designed to fuse the sensor data,
exploiting their strengths and mutually compensating for
their weaknesses. Table II shows the sensors used by the
SRX and their main specifications.

As shown in Figure 7(a), there are multiple LIDAR and
radar sensors installed, giving the vehicle 360-degree cover-
age around the car. Based on this design, any obstacle within
200 meters will be covered by at least one type of sensor.
Obstacles within 60 meters will be detected by at least two
different types of sensors. This configuration maximizes the
sensor’s ability at long range. It also provides redundancy for
obstacles close to the car, which are usually more important
for the autonomous vehicle’s decision making. The LIDAR
& radar can also compensate for each other’s shortcomings
and minimize sensing failures for obstacles within 60 meters.

Figure 7(a) shows how multiple LIDARs and Radars are
installed in pairs around the car, allowing them to see ob-
stacles from the same point of view. This makes the LIDAR
& radar data more consistent with each other and leads to
higher perception performance. Cameras with vision-based
recognition are used to assist the LIDAR/radar fusion system
and also provide traffic light detection, work zone detection
and help other assistance features.

In an autonomous vehicle sensor layout, blind spots can
hardly be avoided. The blind spots for this platform are
shown in Figure 7(b). Because of the integration of multiple
wide-FOV sensors surrounding the car, the blind spots are
small enough that no vehicle can be overlooked. Assisted by
the tracking algorithm of the perception system, the actual
effect of the blind spots can be further reduced.

Fig. 9: Remote stop mechanism of the platform

LIDAR

LIDAR

Radar

Radar

GPS1
Camera

Wheel Speed Sensor
LIDAR
Radar

GPS2
Radar
LIDAR

Fig. 10: Sensor installation

C. Vehicular Communication as a Sensor
Autonomous vehicles require various sensors such as LI-

DAR, radar, cameras, etc. to understand their surroundings;
however, such sensors can be easily obstructed by nearby
obstacles, preventing long-range detection. This can be im-
proved by using sensor data from other vehicles equipped
with a vehicular communication device. Our platform uses a
DSRC (Dedicated Short-Range Communications) [8] modem
to communicate with other similarly equipped vehicles. It
can also talk to any infrastructure equipped with a DSRC
capability. As a proof-of-concept implementation, our plat-
form can retrieve detailed traffic light information via DSRC
from DSRC-equipped traffic lights.

D. Sensor installation
For both safety and appearance reasons, the perception

system should be well concealed and integrated into the
vehicle. Therefore, the described platform avoids additional
exterior sensor mounting racks, which greatly change the
look and aerodynamics of the car.

The final sensor installation is shown in Figure 10. It
shows that even with 15 sensors installed on the vehicle, the
appearance and driving performance of the vehicle are not
much influenced. Compared with previous research vehicle
platforms, which have larger-scale and non-automotive-grade
sensors on top of the car, the proposed sensor configuration
and installation options are more practical for future volume-
produced autonomous vehicles. A typical data acquisition
result of the LIDAR, radar and camera is shown in Figure
8.

VI. SAFETY SYSTEM

The vehicle platform hardware is equipped with a three-
layer safety system: remote stop, auto/manual switch and
emergency stop. The remote stop is used when there is no
one in the car. Virtual valet is one target application, wherein
the vehicle drops off users and then drives away to find a
parking spot. As shown in Figure 9, when the remote stop is
activated, the vehicle will disable both steering and throttle
controllers, press the brake pedal and also apply the parking
brake. This ensures that even if one braking mechanism fails,
the car can still be commanded to stop.

The second layer is the auto/manual switching mechanism,
shown in Figure 11. The most important feature of the

Figure 3.1: Sensor distribution (From: [30]).

(a) Normal (b) Backseat folded down

Fig. 5: The implementation of designed power system with
consideration of space constraints, cooling and accessibility
for debugging

a separation wall is built 6 inches behind the vehicle’s rear
seat. As shown in Figure 5, all power system components
are housed in this concealed space and cooled by the cold
air routed from the outlet for the rear seats. Without major
modification to the vehicle, an isolated and backed-up power
system is integrated into the stock vehicle.

V. PERCEPTION SYSTEM

A. Localization system
High-performance localization is of great importance for

fully autonomous driving. In the DARPA Urban Challenge,
the Tartan Racing team proposed a pose filtering mechanism
that combines the output of global localization and local lane
marker features together [16]. Based on the pose filtering
approach, a hybrid system consisting of both global and local
localization was implemented. The global localization system
focuses on determining the vehicle’s absolute coordinates
on the earth. GPS antennas, wheel speed sensors, IMU and
additional cellular-transmitted RTK correction data are fused
by a GPS pose estimator as shown in Figure 6. This system is
able to localize the vehicle with an error as small as 1.5cm
RMS when the cellular network is available and the GPS
antenna can receive good signals. When the satellites’ signals
become unavailable for a short period of time, the IMU is still
able to keep the localization error relatively small (< 1.0m)
for a few minutes using dead reckoning.

The meter-level error from the global localization system
is usually not good enough for the car to keep in the center
of a lane autonomously. An additional few meters of error
can be expected from the geo-information system’s map.
Therefore, a local localization system is implemented to
compensate the error by using lane marking and road shape
features to estimate the lateral and longitudinal distances

GPS-based
Pose

Estimator

IMU
Wheel
Speed

Sensors

RTK
Corrections

GPS
Antenna2

GPS
Antenna1

Cellular
Modem

Fig. 6: The design of the autonomous vehicle global local-
ization system

(a) (b)

Fig. 7: Perception system coverage with all sensors inte-
grated. a) Maximum ranges b) Sensor Field-of-View (FoV)
and coverage close to the car

between the vehicle and the lane center from the map. This
information is fused with the output of the global localization
to provide a higher-accuracy estimate of the vehicle pose.
More importantly, the pose generated by this mechanism
has an accurate relative position between the vehicle and the
road, which enables the car to drive correctly in the middle
of the road.

B. Environmental Perception System

In autonomous driving, vehicles need to make decisions
based on the perception of the surrounding environment, in-
cluding static and dynamic obstacles. The perception system
performance will greatly affect the system’s overall ability
and robustness. There are three main types of sensors used by
autonomous vehicle platforms: radar, LIDAR and cameras.
Radar has been widely used in automotive applications for
decades. It has the ability to detect obstacles’ positions
and speeds directly. However, radar outputs are usually not
informative enough to estimate obstacle shape.

In the DARPA Challenges in 2005 and 2007, LIDAR
sensors showed great potential for automotive applications.
The data provided by LIDAR are usually a cloud of 3D
points dense enough for the shape of cars, pedestrians,
curbs, undrivable areas and more information to be ex-
tracted. However, LIDAR’s cost, sensing range, robustness to
weather conditions and velocity measurement accuracy are
not as good as radar’s. Cameras are the most cost-effective
sensor for automotive applications. Camera data are very

TABLE II: Installed Sensors’ Specifications

Sensor Type Number FoV (�) MaxRange(m)
/ Resolution

Update
Rate(Hz)

LIDAR 6 85�110 200 50
Radar1 1 12 � 30 250 12.5
Radar2 5 20(near)

18(far)
60(near)
175(far)

20

Video
Camera

1 30 1360x1024 30

FLIR
Camera

1 36 640x480 24

(a) Maximum ranges.

(a) Normal (b) Backseat folded down

Fig. 5: The implementation of designed power system with
consideration of space constraints, cooling and accessibility
for debugging

a separation wall is built 6 inches behind the vehicle’s rear
seat. As shown in Figure 5, all power system components
are housed in this concealed space and cooled by the cold
air routed from the outlet for the rear seats. Without major
modification to the vehicle, an isolated and backed-up power
system is integrated into the stock vehicle.

V. PERCEPTION SYSTEM

A. Localization system
High-performance localization is of great importance for

fully autonomous driving. In the DARPA Urban Challenge,
the Tartan Racing team proposed a pose filtering mechanism
that combines the output of global localization and local lane
marker features together [16]. Based on the pose filtering
approach, a hybrid system consisting of both global and local
localization was implemented. The global localization system
focuses on determining the vehicle’s absolute coordinates
on the earth. GPS antennas, wheel speed sensors, IMU and
additional cellular-transmitted RTK correction data are fused
by a GPS pose estimator as shown in Figure 6. This system is
able to localize the vehicle with an error as small as 1.5cm
RMS when the cellular network is available and the GPS
antenna can receive good signals. When the satellites’ signals
become unavailable for a short period of time, the IMU is still
able to keep the localization error relatively small (< 1.0m)
for a few minutes using dead reckoning.

The meter-level error from the global localization system
is usually not good enough for the car to keep in the center
of a lane autonomously. An additional few meters of error
can be expected from the geo-information system’s map.
Therefore, a local localization system is implemented to
compensate the error by using lane marking and road shape
features to estimate the lateral and longitudinal distances

GPS-based
Pose

Estimator

IMU
Wheel
Speed

Sensors

RTK
Corrections

GPS
Antenna2

GPS
Antenna1

Cellular
Modem

Fig. 6: The design of the autonomous vehicle global local-
ization system

(a) (b)

Fig. 7: Perception system coverage with all sensors inte-
grated. a) Maximum ranges b) Sensor Field-of-View (FoV)
and coverage close to the car

between the vehicle and the lane center from the map. This
information is fused with the output of the global localization
to provide a higher-accuracy estimate of the vehicle pose.
More importantly, the pose generated by this mechanism
has an accurate relative position between the vehicle and the
road, which enables the car to drive correctly in the middle
of the road.

B. Environmental Perception System

In autonomous driving, vehicles need to make decisions
based on the perception of the surrounding environment, in-
cluding static and dynamic obstacles. The perception system
performance will greatly affect the system’s overall ability
and robustness. There are three main types of sensors used by
autonomous vehicle platforms: radar, LIDAR and cameras.
Radar has been widely used in automotive applications for
decades. It has the ability to detect obstacles’ positions
and speeds directly. However, radar outputs are usually not
informative enough to estimate obstacle shape.

In the DARPA Challenges in 2005 and 2007, LIDAR
sensors showed great potential for automotive applications.
The data provided by LIDAR are usually a cloud of 3D
points dense enough for the shape of cars, pedestrians,
curbs, undrivable areas and more information to be ex-
tracted. However, LIDAR’s cost, sensing range, robustness to
weather conditions and velocity measurement accuracy are
not as good as radar’s. Cameras are the most cost-effective
sensor for automotive applications. Camera data are very

TABLE II: Installed Sensors’ Specifications

Sensor Type Number FoV (�) MaxRange(m)
/ Resolution

Update
Rate(Hz)

LIDAR 6 85�110 200 50
Radar1 1 12 � 30 250 12.5
Radar2 5 20(near)

18(far)
60(near)
175(far)

20

Video
Camera

1 30 1360x1024 30

FLIR
Camera

1 36 640x480 24

(b) Sensor FoV and cover-
age close to car.

Figure 3.2: Perception system coverage (green = RADAR, red = LIDAR) (From: [30]).

3.2 LIDAR Sensors

A LIDAR sensor basically consists of a LASER, which stands for light amplification
by stimulated emission of radiation, and a rotating mirror. The mirror is inclined
and changes the direction of the LASER towards the environment. By rotating, the
mirror beams the LASER towards other objects. The targeted objects reflect the light
which is received by the sensor. Based on the time of flight of the LASER beam, the

12

3 Autonomous Driving Research Platform

distance can be calculated. In the end, the sensor provides an angle and a distance
(polar coordinates) which can easily be transformed into, for example, Cartesian
coordinates.

Table 3.1: Excerpt of ibeo LUX 2010 Fact Sheet [32]

Laser
Range 200 m
Measurement
Horizontal FoV: 2 layers: 110� (50� to �60�)

4 layers: 85� (35� to �50�)
Vertical FoV: 3.2�
Number of parallel layers: 4
Data update rate: 50 Hz
Accuracy (distance independent): 10 cm
Angular resolution: Horizontal: up to 0.125�

Vertical: 0.8�
Distance Resolution: 4 cm
Software
Raw data pre-processing: All measurements will be classified and tagged

as valid / ground / dirt / transparent / clutter.

Operating Manual ibeo LUX 2010® Laserscanner

Created on: 10.11.2010 IB-BA-LUX2010-ENU_100711.DOCX Version 3.0 3-12
Changed on: ORIGINAL

Product overview

3.2.1.2.3 Multi-layer technology

Figure 3-5: Principle of multi-layer technology

1 ibeo LUX 2010®

2 Scan level

3 Object

The multi-layer technology of the ibeo LUX 2010® allows for pitch angle compensation by means of four scan
levels (3-5/2) with different vertical angles of the vehicle.
The enables the ibeo LUX 2010® (3-5/1) to detect the object (3-5/3) better, also if the vehicle is e. g. accelerating
or braking.

Figure 3-6: Scan level

1 Vertical opening angle (M) 3 ibeo LUX 2010®

2 Scan level

The photo diode receiver of the ibeo LUX 2010® (3-6/3) consists of four independent receivers arranged in a line.
These four receivers enable the multi-layer technology.
One receiver is assigned to each level, which divides the vertical opening angle (3-6/1) into four scan levels (3-6/2).

These four scan levels are scanned interlaced. This means that the combination of two levels is always
scanned simultaneously (first e. g. the yellow and the green level, then the blue and the red level), see
chapter 0

(a) Four layers of ibeo LUX
2010 (From: [33]).

Operating Manual ibeo LUX 2010® Laserscanner

Created on: 10.11.2010 IB-BA-LUX2010-ENU_100711.DOCX Version 3.0 3-12
Changed on: ORIGINAL

Product overview

3.2.1.2.3 Multi-layer technology

Figure 3-5: Principle of multi-layer technology

1 ibeo LUX 2010®

2 Scan level

3 Object

The multi-layer technology of the ibeo LUX 2010® allows for pitch angle compensation by means of four scan
levels (3-5/2) with different vertical angles of the vehicle.
The enables the ibeo LUX 2010® (3-5/1) to detect the object (3-5/3) better, also if the vehicle is e. g. accelerating
or braking.

Figure 3-6: Scan level

1 Vertical opening angle (M) 3 ibeo LUX 2010®

2 Scan level

The photo diode receiver of the ibeo LUX 2010® (3-6/3) consists of four independent receivers arranged in a line.
These four receivers enable the multi-layer technology.
One receiver is assigned to each level, which divides the vertical opening angle (3-6/1) into four scan levels (3-6/2).

These four scan levels are scanned interlaced. This means that the combination of two levels is always
scanned simultaneously (first e. g. the yellow and the green level, then the blue and the red level), see
chapter 0

(b) Multiple layers compensating change of inclination
(From: [33]).

Figure 3.3: Multiple layers and their purpose. (a) The four layers of ibeo LUX 2010
and vertical angular resolution, (b) the layers’ purpose of compensating a
change of inclination of the road.

The six LIDAR sensors which were mounted on the research vehicle are 2D LRFs
of the model ibeo LUX 2010 [33]. They consist of four LASERs and mirrors and
therefore comprise four layers, as shown in Figure 3.3a. Theoretically, such a LRF

13

3 Autonomous Driving Research Platform

delivers 3D information already. However, the four layers rather serve the purpose of
compensating pitch of the vehicle or change of inclination of the road than enhance
the information from 2D to 3D (Figure 3.3b). Despite the four layers, the sensors
are referred to as 2D or sometimes “2D+”. The two upper layers are shifted with
respect to one another about the vertical axis by half of the angular resolution. This
doubles the horizotnal resolution, as depicted in Figure 3.4. In fact, the horizontal

Operating Manual ibeo LUX 2010® Laserscanner

Created on: 10.11.2010 IB-BA-LUX2010-ENU_100711.DOCX Version 3.0 3-19
Changed on: ORIGINAL

Product overview

Figure 3-11: Angular resolution example (scan frequency 12.5 Hz, central range)

3.2.1.2.11 Divergence of the optical system

Figure 3-12: beam size at 20m with a angular resolution of 0.25°

Figure 3.4: Displacement of the four layers (From: [33]).

angular resolution as well as the frequency can be adapted. Table 3.1 shows relevant
technical information about the ibeo LUX 2010. The horizontal angular resolution
can be adapted in certain sectors of the horizontal FoV as depicted in Figure 3.5a.

Operating Manual ibeo LUX 2010® Laserscanner

Created on: 10.11.2010 IB-BA-LUX2010-ENU_100711.DOCX Version 3.0 3-13
Changed on: ORIGINAL

Product overview

3.2.1.2.4 Angle resolution differing by sector

The angle resolution can be set to differing by sector. This can be set only at a scan frequency of 12.5 Hz.

The angle resolution differing by sector depends on the requirements of use in the vehicle.

The focus of the angle resolution is in an area of ±10 ° (3-9/1) around the direction of travel, referred to as central
area.
The direction of travel is defined as the x-axis of vehicles.
The central area is characterized by a high angular resolution in order to gain good measuring results, e.g. for ACC
(Adaptive Cruise Control) even over larger distances with multiple measuring data per object.

A slightly lesser angle resolution is applied in the medium area (3-9/2) of ±(30° to 10°) around the x-axis.

The lateral area between +50° to +30° and -30° to -60° (3-9/3) for objects on the side has a smaller angle
resolution because the objects in that area are less relevant.

Figure 3-9: Angle resolution differing by sector

1 central range 3 lateral range

2 medium range 4 ibeo LUX 2010®

With the angle resolution differing by sector the sectors have the following resolution.

angle resolution Scan frequency 12.5 Hz

central range 0.125°

medium range 0.25°

lateral range 0.5°

(a) Horizontal angular reso-
lution differing by sector.

Operating Manual ibeo LUX 2010® Laserscanner

Created on: 10.11.2010 IB-BA-LUX2010-ENU_100711.DOCX Version 3.0 3-14
Changed on: ORIGINAL

Product overview

3.2.1.2.5 Constant angle resolution

The angle resolution can be set to constant angle resolution. This can be set at each valid frequency (12.,5 Hz,
25 Hz and 50 Hz).

Figure 3-10: Scan frequency 12.5 Hz, constant angle resolution of 0.25°

With the constant angle resolution the sector has the following resolution.

angle resolution Scan frequency 12.5 Hz Scan frequency 25 Hz Scan frequency 50 Hz

main range 0.25° 0.25° 0.5°

3.2.1.2.6 Angle resolution and scan frequency

Level Echo 1 Echo 2 Echo 3

4 -yellow

3- green

2 - blue

1 - red

Table 3-1: Naming convention (colors see figure 3-6)

Color hues visualize the levels and color saturation of the echoes. Table 3-1 lists the specified naming conventions
for the levels and their preset colors used for the visualization.

(b) Homogeneous horizon-
tal angular resolution.

Figure 3.5: Angle resolution (From: [33]).

The resolution can be changed as depicted only with a frequency of 12.5 Hz and as
shown in Table 3.3. Without different sectors, the horizontal resolution can also be
changed but depends on the frequency (Figure 3.5b, Table 3.4).

Our scans are created with a frequency of 12.5 Hertz and an angular resolution
like the one in Figure 3.5a.

14

3 Autonomous Driving Research Platform

Table 3.3: Horizontal angular resolution for different sectors for 12.5 Hz frequency
(Adapted from: [33]).

Angle resolution Central range Medium range Lateral range
Scan frequency 12.5 Hz 0.125� 0.25� 0.5�
Sector of Figure 3.5a red orange yellow

Table 3.4: Horizontal angular resolution for different frequencies
(Adapted from: [33]).

Scan frequency 12.5 Hz 25 Hz 50 Hz
Angle resolution 0.25� 0.25� 0.5�

3.3 Pre-Processing Data Points

Before the data are processed by our algorithm, they have already been pre-processed
on the research platform. For one thing, all points are transformed from their sensor
coordinate frame to the vehicle coordinate frame and, for another thing, the ground
points are removed.

3.3.1 Sensor Fusion

Every sensor has one coordinate system of its own. Due to the working principle of a
LRF, it uses a polar coordinate system. The six sensors are mounted on the vehicle,
so their position is known within the vehicle’s Cartesian coordinate system. After
scanning the environment, all points are transformed into this coordinate system
with the ibeo’s internal software. Via Ethernet, the data points can be retrieved in
polar coordinates from the sensor itself or in Cartesian coordinates from the sensor’s
application program interface (API) [33].

3.3.2 Deleting Ground Points

As shown in Table 3.1, ground points are tagged as such already. These points are
then deleted either before the tracking algorithm is performed or as one of the first
steps within the algorithm.

15

3 Autonomous Driving Research Platform

3.4 Differences Compared to One One-Layered LRF

In order to clarify the differences between multiple or multi-layered devices with one
one-layered device, we want to consider one L-shaped cluster. Figure 3.6a, b, c, and d
depict layer 1, 2, 3, and 4 from one ibeo LUX 2010 of the same cluster. Due to the

�6 �5

13

14

15

16

x [m]

y
[m

]

(a) Layer 1.

�6 �5

13

14

15

16

x [m]

y
[m

]

(b) Layer 2.

�6 �5

13

14

15

16

x [m]

y
[m

]

(c) Layer 3.

�6 �5

13

14

15

16

x [m]
y

[m
]

(d) Layer 4.

Figure 3.6: Points of one LRF reflecting the same object separated by layer.

rather thin line and clear outline, one could already guess the order of the points
without looking into the metadata. With the order information, it is no problem to
find the first and last point of the cluster. A third point of the cluster with the largest
perpendicular distance to the connection line of the first and last point would be the
corner. This corresponds to one iteration of the IEPF algorithm. Another use of the
order information would be the possibility to determine the gradient from one to the
next point. The largest change in direction would mark the corner (similar to [19]).
However, the outlier in the bend of layer 4 would probably cause problems. If all
layers are merged (Figure 3.7), the outline of the L is still clear but the line is thicker
and the order of the points becomes unrecoverable. For example, starting counting
at the point with the largest y-coordinate, the second point of layer 1 and the first
point of all other layers are basically at the exact same spot. The order of the points
becomes useless. The same problem occurs with multiple one-layered devices.

16

3 Autonomous Driving Research Platform

�6 �5.5 �5

13

14

15

16

x [m]

y
[m

]

Figure 3.7: The points of all four layers of one LRF merged. Blue = Layer 1, Green =
Layer 2, Black = Layer 3, Red = Layer 4.

There are two ways to work with these clusters:

• Handle each layer/device separately and merge the results afterwards (like for
example [11]).

• Merge the points of all layers/devices, handle all points as one set, and relin-
quish order information, which is our approach.

Section 4.4.2 describes in detail how we process these points.

17

4 Tracking Algorithm

In order to track other vehicles, the LIDAR data generated by the LRF are simply
preprocessed by a coordinate transformation and by cutting off points. Then clusters
are segmented and classified using geometry and track information. After post-
processing, features are extracted and post-processed using geometry and track
information as well. In the end, the new scan is associated with the old scan and
already known tracks. If there are new objects or some old ones are missing, track
management creates new or deletes old tracks. This algorithm is depicted in Figure 4.1
and is explained in more detail in the following sections.

Data

Preprocessing

Segmentation

Classification

Classification Post-Processing

Feature Extraction

Feature Extraction Post-Processing

Data Association

Track Management

Track Information

Figure 4.1: Tracking Algorithm.

18

4 Tracking Algorithm

4.1 Preprocessing

After the LIDAR points are received from the LRF and before the tracking algorithm
starts, they can be preprocessed for many reasons. One could fix or adapt something,
delete some points, or delete or add information from or to each point. We only
perform a coordinate transformation and cut off points which are too far away
to be considered important or a vehicle. Figure 4.2a shows all points of a scan
without any processing. Figure 4.2b shows the remaining points after the coordinate
transformation and the cutting off of points at the borders.

0 20 40 60

�20

0

20

x [m]

y
[m

]

(a) Untouched points.

�20 �10 0 10 20
�10

0

10

20

30

40

x [m]

y
[m

]

(b) Points after coordinate transforma-
tion and cropping.

Figure 4.2: LIDAR points (a) before and (b) after preprocessing. First, x- and y-
coordinates are swapped and second, points in the left, right, and front
are deleted. For better comparison, we marked a cluster that appears in
both figures.

4.2 Segmentation

Other cars, pedestrians, or in general other objects surround the ego-vehicle. In
a perfect scan, every object would cause exactly one cluster or segment of points.
Therefore, the segmentation algorithm groups points which may belong to the same

19

4 Tracking Algorithm

object into clusters or segments such that points within one cluster are closer to each
other than to points of another cluster. Various distance measures could be used,
but we choose Euclidean distance. Segmentation provides a list of segments which
ideally represent one object each. Due to non-optimal segmentation parameters,
partial occlusion, and other factors, it often happens that a segment belongs to one
or more objects or that an object causes one or more segments. Of course, an object
could also fail to cause a segment because it is fully occluded.

There are various segmentation algorithms. Hierarchical clustering, for example,
groups points according to their distance to each other and by varying the distance
threshold, other clusters are formed. Those algorithms provide a hierarchy in which
the clusters are merged or split according to the chosen distance threshold. The
hierarchy is often depicted using dendograms. Centroid-based clustering, like k-
means clustering, groups points around a centroid which does not need to be a
point itself. Distribution-based clustering, like Gaussian mixture models using the
expectation-maximization algorithm, assume that points are caused due to a specific
distribution and group points which most likely belong to the same distribution.
Density-based clustering (like DBSCAN) groups points with a similar (usually high)
density. Points in sparse areas are often considered noise.

Since points close to a LRF are more dense than points with a larger distance, we
considered using a density-based algorithm. Due to its speed, we use density-based
spatial clustering of applications with noise (DBSCAN) [34]. The algorithm requires
two parameters: a minimum-point- and a distance-threshold (Dthd). DBSCAN counts
all neighboring points within a Dthd-neighborhood. If that number is smaller than
the minimum-point-threshold, it is considered noise. Otherwise, it is added to the
current cluster or a new cluster will be created. Figure 4.3 shows the points from
Figure 4.2b after segmentation.

4.3 Classification Step

After segmenting all data points, we categorize every cluster into one of several
classes according to its geometry. Further processing is easier if the shape or other
characteristics are known because the clusters of different classes can be handled
differently. All but one class are based on the different perspectives the LRF is

20

4 Tracking Algorithm

�20 �10 0 10 20
�10

0

10

20

30

40

x [m]

y
[m

]

(a) LIDAR points before segmentation.

�20 �10 0 10 20
�10

0

10

20

30

40

x [m]

y
[m

]

(b) LIDAR points after segmentation.

Figure 4.3: LIDAR points (a) before and (b) after segmentation. Every cluster with
another color is one segment. Black points are considered noise.

perceiving from another vehicle. If a cluster is oddly shaped, it is assigned the class
“O”, which stands for other. The clusters are classified by assuming they belong to a
specific class and extracting the respective features with a similar pre-fit algorithm
used in feature extraction, which is described in detail in subsection 4.4.2. If the
features fit and the errors are small, the cluster is assigned to the respective class. The
difference from the actual feature extraction is that the classification pre-fit algorithms
use linear regression in contrast to orthogonal regression. Doing this, this classification
is solely based on geometry of the clusters. After classification, we take the track
history into account by predicting the future position of a track and switching the
class of oddly shaped clusters if they appear to occupy the anticipated space. In
addition, we reduce over-segmentation by merging close clusters of appropriate
classes. In the following subsections, we briefly explain linear regression and go into
detail on how we perform class assignment and how the post-processing works.

21

4 Tracking Algorithm

4.3.1 Linear Regression

Assume we have n data points {(xi, yi), i = 1 . . . n} and that yi relates to xi as follows:

yi = a + bxi + ei, (4.1)

with a being the y-intercept, b being the slope of the regression line, and with e being
the residual, i.e., the difference between the y-coordinate of the measured point and
the regression line (compare Figure 4.4a). The goal of linear regression [35, 36] is to
find the function of the regression line and therefore a and b:

y = a + bx (4.2)

such that the sum of squared residuals (SSR) is minimized. The ordinary least
squares (OLS) [37] estimation of the regression line is calculated as follows:

argmin
a,b

SSR(a, b), (4.3)

with

SSR(a, b) =
n

Â
i=1

e2
i =

n

Â
i=1

(yi � a � bxi)
2. (4.4)

4.3.2 Classification

The clusters seen in a scan reflect objects in the real world. One LRF perceives only
one or two sides of a vehicle at the same time. If a cluster consists of just one side of
a vehicle, the cluster looks like a line which can be horizontal, vertical, or something
in between. These lines are classified as “H” or “V” depending on the angle (see
Figure 4.5a and 4.5b for examples). If two sides of a car are visible, the cluster looks
like an “L” which is also the assigned class (Figure 4.5c). Since the autonomous
driving research platform is equipped with several LRFs attached around the vehicle
(see section 3.2), it might happen that three sides of an object are visible. Therefore,
we introduced a “U” class (Figure 4.5d). All other clusters which cannot be assigned
to one of these classes are classified as “O” (for example Figure 4.5e and 4.5f). When
a cluster is classified as “O”, it implies that it most certainly is not a road vehicle. The
basic idea of classifying clusters in this way is inspired by [13].

22

4 Tracking Algorithm

x

y

•
•

•
•

•

(a) Linear regression.

x

y

•
•

•
•

•

(b) Orthogonal regression.

Figure 4.4: Linear and orthogonal regression. (a) Linear regression minimizes the
distance between points and regression line parallel to the y-axis. (b)
Orthogonal regression minimizes the perpendicular distance between
points and regression line.

When classifying a cluster, we assume that it is an “H”, “V”, “L”, or “U” cluster. We
then perform the pre-fit algorithm used in feature extraction (section 4.4) with linear
instead of orthogonal regression. Basically, the algorithm fits one (“H”, “V”), two
(“L”), or three (“U”) lines along the cluster and returns the parameters describing the
lines as well as the angles between them. If the lines have a good fit with small error
and the angles are approximately 90�, the cluster is assigned to the respective class.
In addition, the ratio of the area of the alpha shape [38] to the area of the minimum
bounding box (BB) is taken into account to guarantee that the two sides of U-shaped
clusters are long enough (Figure 4.6). If all checks fail, the cluster is assigned to the
“other” class (“O”).

4.3.3 Post-Processing

Since the previous classification step considers geometrical information only, a post-
processing step is supposed to change the class of wrongly classified clusters. The
post-processing comprises one part in which track information is used and another
part in which the geometry of cluster pairs is used to reduce over-segmentation.

23

4 Tracking Algorithm

�0.5 0 0.5 1

36

36.5

37

x [m]

y
[m

]

(a) Example cluster of class “H”.

�9 �8 �7 �6 �5

6

7

8

9

x [m]

y
[m

]
(b) Example cluster of class “V”.

�8 �7 �6 �5 �4

19

20

21

22

x [m]

y
[m

]

(c) Example cluster of class “L”.

�12�11.5�11�10.5�10

22.5

23

23.5

24

x [m]

y
[m

]

(d) Example cluster of class “U”.

�8 �7.8�7.6�7.4�7.2 �7 �6.8

33.4

33.6

33.8

34

34.2

x [m]

y
[m

]

(e) Example cluster of class “O”.

9 10 11 12 13

16

17

18

19

x [m]

y
[m

]

(f) Example cluster of class “O”.

Figure 4.5: Examples of different classes: (a) H, (b) V, (c) L, (d) U, (e) and (f) O

24

4 Tracking Algorithm

�12 �11 �10
22

22.5

23

23.5

24

24.5

x [m]

y
[m

]

(a) Alpha shape of U-shaped cluster.

�12 �11 �10
22

22.5

23

23.5

24

24.5

x [m]

y
[m

]
(b) Boundary of alpha shape and minimum

bounding box of U-shaped cluster.

Figure 4.6: U-shaped cluster which is depicted in Figure 4.5d with (a) Alpha shape
and (b) boundary of alpha shape and minimum bounding box.

Using Track Information

Sometimes, clusters are oddly shaped even if they should represent a simple cluster
shape. As a result, the classification algorithm fails to detect the correct class and
assigns the other class “O”. However, if the motion history suggests that one of those
clusters might be a road vehicle and should be assigned otherwise, we predict the
movement of tracks and check whether an “O”-cluster occupies the space of one of
these predictions. If that is the case, we classify the clusters again but with fewer or
more relaxed constraints (Figure 4.7). If again no classification is possible, the cluster
will be assigned class “C”1. This way, the cluster will be considered in the next steps
of the tracking algorithm and might be merged with another cluster if caused by
over-segmentation.

1The “C” might stand for a crossed class (class does not reflect the actual appearance) and the
C-shape looks similar to those of an “O”.

25

4 Tracking Algorithm

�8 �7 �6 �5 �4

19

20

21

O

x [m]

y
[m

]

(a) Cluster of vehicle classified as “O”.

�8 �7 �6 �5 �4

19

20

21

L

x [m]

y
[m

]
(b) Same cluster classified as “L” during post-

processing.

Figure 4.7: Same cluster (a) after classification and (b) after post-processing. Classifi-
cation as “L” with relaxed constraints is successful during post-processing.

Reducing Over-Segmentation

A perfectly segmented point cloud would consist of one cluster per object in the
physical world. Over-segmentation means that more than one cluster belongs to a
physical object. The frequency of this happening mostly depends on the distance-
threshold of the segmentation algorithm and also occurs due to occlusion, noise,
missing points, or in general wider gaps between points within a cluster than expected.
Figure 4.8a and 4.8d depict two examples of over-segmented clusters.

Whether two V-, two H-, L- and H-, L- and V-, or L- and C-clusters are merged,
ultimately, two straight segments are processed and eventually merged. In order
to check whether these segments qualify for being merged, the regression line and
minimum bounding box of each segment as well as the minimum bounding box of
all points are taken into account, as depicted in Figure 4.8b. Before two clusters can
be merged, they have to fulfill certain requirements (compare Figure 4.8b):

• Clusters need to be neighbors (no third cluster in between).

• Distance between clusters needs to be within a threshold.

• Difference of angles between regression lines needs to be within a threshold.

• Difference of widths of small BBs needs to be within a threshold.

26

4 Tracking Algorithm

• Difference of angles between small BBs to overall BB needs to be within a
threshold.

• Length-to-width ratio of overall BB has to be bigger than a threshold.

When all requirements are fulfilled, the two clusters are merged and no longer
over-segmented (for example the clusters in Figure 4.8e).

4.4 Feature Extraction Step

In order to properly track an object and accurately determine values like velocity or
acceleration, it is reasonable to extract a stable feature of a vehicle. Due to a car’s
rectangle-like shape, the feature chosen is a corner. According to the class of a cluster,
a different approach extracts the corners of a vehicle. To achieve that, we perform
a pre-fit, which is also used for classification, and adapt parameters afterwards. As
described in section 3.2, the used LRFs are not considered 3D but still have some 3D
information due to their four layers. We want to use this extra information by using
orthogonal instead of linear regression with the pre-fit. Usually the extracted corners,
especially of L- and U-shaped clusters, are not right corners. That is the reason why
we force the angle to be 90� afterwards and adapt other parameters accordingly. In a
post-processing step, we calculate the area of the vehicle if the cluster shape allows it.
If not, we use the length of, for example, H- or V-clusters to determine whether the
cluster is too small to be considered a vehicle. In the following subsections, we briefly
explain orthogonal regression, go into detail on how we perform feature extraction,
and how the post-processing works.

4.4.1 Orthogonal Regression

Assume we have n data points {(xi, yi), i = 1 . . . n} and that xi and yi relate to their
respective values on the regression line (x⇤i , y⇤i) as follows:

yi = y⇤i + ei (4.5)

xi = x⇤i + hi (4.6)

27

4 Tracking Algorithm

10 12 14
6

8

10
L H

x [m]

y
[m

]

(a) An over-segmented L-shaped cluster
resulting in an L- and H-cluster.

10 12 14
6

8

10

x [m]

y
[m

]

(b) Regression lines, minimum BBs, and
overall minimum BB used during
check of whether clusters can be
merged.

�10 �9 �8 �7
12

14

16

18

20

L

x [m]

y
[m

]

(c) L-shaped cluster
normally segmented.

�10 �9 �8 �7
12

14

16

18

20

L

V

x [m]

y
[m

]

(d) Clusters belonging to
the same object of (c) are
over-segmented due to
a wider gap in the long
side of the L.

�10 �9 �8 �7
12

14

16

18

20

L

x [m]

y
[m

]

(e) L- and V- are merged
after post-processing.

Figure 4.8: Merging over-segmented clusters.

28

4 Tracking Algorithm

with residuals e and h in y- and x-direction respectively (compare Figure 4.4b). The
residuals are independent and the ratio of their variances is assumed to be known:

d =
s2

e

s2
h

. (4.7)

Since we do not know the variances of e and h, we assume them to be equal and
therefore d = 1, which is called orthogonal regression [39]. Like simple linear regression,
orthogonal regression determines the parameters of the regression line:

y⇤ = a + bx⇤ (4.8)

by minimizing the SSR as well:

argmin
a,b

SSR(a, b), (4.9)

with [40, p. 37]

SSR(a, b) =
n

Â
i=1

e2

i
s2

e
+

h2
i

s2
h

!
=

1
s2

e

n

Â
i=1

⇣
(yi � a � bx⇤i)

2 + d(xi � x⇤i)
2
⌘

. (4.10)

4.4.2 Feature Extraction

Roughly, two basic approaches shape the algorithms used to extract features: a plane
fitting and a bounding box approach. Features, i.e. corners, of L- and U-shaped
clusters are extracted by fitting a plane through the 3D points of each side of the
L or U. Parameters of those planes are then adapted to turn the angle into a right
one. H- and V-clusters consist of points of just one side of a vehicle. Here we use a
combination of the bounding box and linear regression to determine the corner of
the vehicle.

Pre-fit L

The idea of the pre-fit algorithm for L-shaped clusters is based on the IEPF algo-
rithm [41] and comprises the following steps:

29

4 Tracking Algorithm

1. Determine the two points with the largest distance between each other (Fig-
ure 4.9a).

2. Split line at point with the largest perpendicular distance to the line connecting
the two points of step 1 (Figure 4.9b).

3. Determine the points on each of the two sides with the largest distance to that
split point (Figure 4.9c)

4. Determine four points with the largest perpendicular distance to the line con-
necting the two points of step 3 and split the line at the one which results in an
angle closest to 90� (Figure 4.9d).

5. For both lines do:

a) Determine perpendicular distance of all points to line.

b) Take best fitting 80 percent.

c) Perform orthogonal regression (Figure 4.9e) if there are at least four points
left. Perform linear regression otherwise.

The result in 2D is depicted in Figure 4.9f. The same algorithm with only linear
regression is used for classification (subsection 4.3.2). With orthogonal regression, the
hyperplane fitting is less prone to outliers which still affect the angle of the corner.

L

The angle provided by the pre-fitting rarely is 90�. Since we know that the corner of
a car has a 90� angle, we want to change that. Therefore, we do the following:

1. Iteratively change slopes such that the angle becomes 90� and adapt y-intersect
accordingly (Figure 4.10a).

2. Turn small side around corner by 90� such that it is in line with the long side
(Figure 4.10b).

3. Pre-fit a plane through all points.

4. Fit a plane through 80 percent of best-fitting points.

5. Choose slope of small side such that the angle equals 90� (Figure 4.10b).

6. Determine all four corners (Figure 4.10b).

30

4 Tracking Algorithm

19 20 21 22

�7

�6

�5

x [m]

y
[m

]

(a) Farthest points connected with a line.

19 20 21 22

�7

�6

�5

x [m]

y
[m

]

(b) First split at point with largest perpen-
dicular distance to line of (a).

19 20 21 22

�7

�6

�5

x [m]

y
[m

]

(c) Farthest points from split point con-
nected with a line.

19 20 21 22

�7

�6

�5

x [m]

y
[m

]

(d) Final split at one of four points with
largest perpendicular distance to line of
(c) and closest angle to 90�.

-1.2

-1

23

-0.8

22

-0.6

z
[m

]

21

-0.4

x [m]

-0.2

20

0

-8
19

0.2

-7

y [m]
-618

-5

(e) Orthogonal regression.

19 20 21 22

�7

�6

�5

x [m]

y
[m

]

(f) Result after (orthogonal) regression.

Figure 4.9: Pre-fit algorithm for L-shaped clusters.

31

4 Tracking Algorithm

18 20 22
�8

�7

�6

�5

�4

x [m]

y
[m

]

(a) Angle forced to be 90�.

18 20 22
�8

�7

�6

�5

�4

x [m]

y
[m

]

(b) Small side turned around, plane fitted
through 80 percent of the points, and all
four corners.

Figure 4.10: Final feature extraction of L-shaped clusters.

Pre-fit U

Since the same or a similar algorithm for pre-fitting L-shaped clusters does not work
with U-shaped ones, we use another approach:

1. Determine minimum bounding box and diagonals (Figure 4.11b).

2. Group each point with one of the four sides based on the quadrants established
by the diagonals (Figure 4.11c).

3. If necessary: Merge points such that actual empty side becomes empty (Fig-
ure 4.11d).

4. For each line do:

a) Fit line through points with largest distance to each other.

b) Take 80 percent of best fitting points.

c) Perform orthogonal regression (Figure 4.11e) if there are at least four points
left. Perform linear regression otherwise.

The result in 2D is depicted in Figure 4.11f. The same algorithm with linear regression
only is used for classification (subsection 4.3.2). Orthogonal regression reduces the
effect of outliers but they still affect the corners and angles.

32

4 Tracking Algorithm

�12�11.5�11�10.5�10

22.5

23

23.5

24

x [m]

y
[m

]

(a) Points of U-shaped cluster.

�12�11.5�11�10.5�10

22.5

23

23.5

24

x [m]

y
[m

]

(b) Quadrants established by diagonals of
minimum bounding box.

�12�11.5�11�10.5�10

22.5

23

23.5

24

x [m]

y
[m

]

(c) Points grouped based on quadrants.

�12�11.5�11�10.5�10

22.5

23

23.5

24

x [m]

y
[m

]

(d) Three remaining groups after merging.

24.2

-0.6

24

23.8

23.6

-0.4

y
[m

]

23.4

23.2

z
[m

]

23

-0.2

22.8

x [m]

-10.522.6
-11-11.5-12

0

0.2

(e) Orthogonal Regression.

�12�11.5�11�10.5�10

22.5

23

23.5

24

x [m]

y
[m

]

(f) Results after (orthogonal) regression.

Figure 4.11: Pre-fit algorithm for U-shaped clusters.

33

4 Tracking Algorithm

U

Due to outliers and rounded corners, the angles provided by the pre-fitting rarely
is 90�. To guarantee a right angle, we perform a similar algorithm to the one for
L-shaped clusters:

1. Iteratively change slopes such that the angles become 90� and adapt y-intersects
accordingly (Figure 4.12a).

2. Turn outer sides around corners by 90� such that they are in line with middle
part (Figure 4.12b).

3. Pre-fit a plane through all points.

4. Fit a plane through 80 percent of best-fitting points.

5. Choose slope of outer sides such that the angles equals 90� (Figure 4.12b).

6. Determine all four corners (Figure 4.12b).

�12 �11 �10 �9

22

23

24

x [m]

y
[m

]

(a) Angles forced to be 90�.

�12 �11 �10 �9

22

23

24

x [m]

y
[m

]

(b) Outer sides turned around, plane fitted
through 80 percent of the points, and all
four corners.

Figure 4.12: Final feature extraction of U-shaped clusters.

H/V

H- or V-clusters represent just one side of a car and may contain one, both, or no
corners of the actual car. As features of H- or V-clusters, we choose both ends of these
clusters. To determine a good corner estimate, we do the following:

34

4 Tracking Algorithm

1. Determine minimal bounding box.

2. Pre-fit a line through all points.

3. Fit a line through 90 percent of best-fitting points.

4. Determine intersection of regression line and bounding box (Figure 4.13a).

10.5 11 11.5 12 12.5

14.5

15

x [m]

y
[m

]

(a) Minimum bounding box, regression line,
and extracted features of an H-cluster.

6 8 10 12

18

20

22

x [m]

y
[m

]

(b) C-cluster and its minimum bounding box
whose corners are used as features for
C-clusters.

Figure 4.13: Feature extraction of H-, V-, and C-clusters. (a) The features of an H-
or V-cluster are depicted as red points which are the intersection of the
regression line and the minimum bounding box. (b) The features of
C-clusters are corners of the minimum bounding box.

C

Since a C-cluster can have any shape (it is just assigned “C” due to its motion history),
we use the corners of the minimum bounding box as features (Figure 4.13b).

4.4.3 Post-Processing

After extracting all features, it is possible to calculate the 2D area an L- or U-shaped
cluster covers. The area of the object represented by an H- or V-cluster cannot be
calculated. However, for post-processing, their length provides enough information.
To cancel out too small or too large objects for the next steps in the tracking chain,
we define some empirically determined thresholds for minimum length, maximum

35

4 Tracking Algorithm

length, minimum area, and maximum area. If a track’s prediction overlaps with a
cluster, we use less restrictive thresholds. If a cluster does not lie within the defined
range, we change its class to “O”.

4.5 Data Association

After determining classes and extracting features, we have to identify the same object
in a sequence of scans to compute the motion history. During a drive, the LRF
provides several new scans per second and as an example, Figure 4.14a and 4.14b
depict two consecutive scans. The so called correspondence problem is about finding
the cluster in scan at time t + 1 which belongs to the same object in the real world
represented by a certain cluster in the scan at time t. To solve this problem we use
the motion history and predict the movement of the object. If the future position of
the object and the cluster match, we assign the cluster to the object.

�10 0 10

10

20

30

x [m]

y
[m

]

(a) Scan at time t.

�10 0 10

10

20

30

x [m]

y
[m

]

(b) Scan at time t + 1.

Figure 4.14: Two consecutive scans.

Since we use the motion history, the correspondence problem is only solved for
objects which are tracked during that scan. Subsequently, we explain the prediction
and how the matching works.

36

4 Tracking Algorithm

4.5.1 Kalman Filter

We predict the movements of objects with Kalman filters (KFs) [42]. The values we
are interested in are: position (x- and y-coordinate), velocity (in x- and y-direction),
and the yaw angle f of the object and its angular velocity w. Therefore, the state
vector is:

State vector x =
⇣

x vx y vy f w
⌘T

(4.11)

State x(n) transitions into next state x(n+1) with:

State transition A =

0

BBBBBBBBB@

1 Dt 0 0 0 0
0 1 0 0 0 0
0 0 1 Dt 0 0
0 0 0 1 0 0
0 0 0 0 1 Dt
0 0 0 0 0 1

1

CCCCCCCCCA

(4.12)

This way, the position gets updated with the old position and the velocity. With
two consecutive velocities v(t) and v(t � 1), it is possible to calculate an average
acceleration over that time range: a= v(t)�v(t�1)

Dt . We do that and add the translational
and rotatory acceleration as the control vector:

Control vector u =
⇣

ax ay a
⌘T

(4.13)

These values are added to the state prediction with:

Control matrix B =

0

BBBBBBBBB@

0.5 ⇤ Dt2 0 0
Dt 0 0
0 0.5 ⇤ Dt2 0
0 Dt 0
0 0 0.5 ⇤ Dt2

0 0 Dt

1

CCCCCCCCCA

(4.14)

37

4 Tracking Algorithm

With the state transition and control vector, the next state is predicted as follows:

x(n + 1) = x(n) + vx(n)Dt + ax(n) ⇤ 0.5Dt2 (4.15)

vx(n + 1) = + vx(n) + ax(n)Dt (4.16)

y(n + 1) = y(n) + vy(n)Dt + ay(n) ⇤ 0.5Dt2 (4.17)

vy(n + 1) = + vy(n) + ay(n)Dt (4.18)

f(n + 1) = f(n) + w(n)Dt + a(n) ⇤ 0.5Dt2 (4.19)

w(n + 1) = + w(n) + a(n)Dt (4.20)

For the measurement covariance matrix R, we use a standard deviation (STD) of 1 cm
for the x- and y- position, an empirically determined STD of 5 m

s for the velocities, an
empirically determined STD of 1� for the angle and 5deg

s for angular velocity:

Measurement covariance R =

0

BBBBBBBBB@

0.012 0 0 0 0 0
0 52 0 0 0 0
0 0 0.012 0 0 0
0 0 0 52 0 0
0 0 0 0 12 0
0 0 0 0 0 52

1

CCCCCCCCCA

. (4.21)

To complete the list of matrices needed for a Kalman filter, the remaining matrices
are:

Observation matrix H =

0

BBBBBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

CCCCCCCCCA

(4.22)

38

4 Tracking Algorithm

Initial probability P =

0

BBBBBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

CCCCCCCCCA

(4.23)

Process covariance Q =

0

BBBBBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1

CCCCCCCCCA

. (4.24)

4.5.2 Data Association

As seen in Figure 4.14a and 4.14b, two consecutive scans look very similar. However,
due to moving objects and moving LRFs, the clusters themselves will most likely
look differently. Due to slightly different cluster shapes and wider or more narrow
gaps, the segmentation algorithm might perform differently, which again affects all
following steps in the tracking chain. After extracting features, the correspondence
problem has to be solved in order to properly track an object.

Figure 4.15 depicts all information needed to do so. The black rectangle is the
currently known position of the tracked object. The blue points are the features of a
cluster extracted in the step before. Now, we predict the future position of the object
with a Kalman filter described in subsection 4.5.1. The predicted position is depicted
as the red dashed rectangle in Figure 4.15. When the predicted rectangle and the
rectangle of the detected object overlap, we assign the cluster as a measurement to the
track. However, the cluster-track-combination has four permutations. There might be
a track but no cluster, a cluster but no track, a track and multiple clusters, or multiple
tracks and just one cluster. Section 4.6 describes how these variations are handled. If
the assignment is unique, like the one in Figure 4.15, the track or rather its Kalman
filter is updated with the measurement. The value returned by the Kalman filter
determines the new position of the tracked object, which is depicted as a blue dashed
rectangle for our example in Figure 4.15.

39

4 Tracking Algorithm

0 2 4 6

18

20

22

x [m]

y
[m

]

Figure 4.15: Correspondence problem. The black rectangle is the current position
of the track. The red dashed rectangle is the prediction of the track
provided by the Kalman filter. The blue points are the extracted features
of a detected object. The blue dashed rectangle is the new position of the
track after assigning the measured cluster to the track and updating the
Kalman filter with it.

4.5.3 Reference Point and Handling of View Change

During the lifetime of a track, the observed object will most certainly move, which
again leads to different views the LRFs will perceive. That is the reason the feature
extraction algorithm (section 4.4) extracts corners, because one sensor sees at most
two sides of an object. If a sensor detects two sides, the corner in the middle is a
stable feature. If the sensor perceives just one side, it is impossible to determine
whether the ends of the line are the corners of an object without further information.

When the object is moving and changing its angle relative to the sensor, one of the
sides or line segments will disappear and another side or line segment will appear
eventually. This change of viewpoint leads to the loss of the reference point and
problems during tracking. Figure 4.16 shows an example of this process.

We handle this issue by memorizing the position of the reference point relative
to the object in the longitudinal and lateral direction. Figure 4.17 depicts the same
example in a schematic and simplified version. For the sake of this example, we
assume that Figure 4.17a is the first time the object is detected. The reference point
is the extracted corner in the lower left. Along with other information, we store the
longitudinal and lateral vector along the vehicle originating from the reference point.

40

4 Tracking Algorithm

The vehicle will steer to the right and the left side will disappear. Therefore, the left
side is missing in Figure 4.17b. In H- or V-clusters, the closest endpoint of the line
is equivalent to the reference point. After turning a bit more, the other endpoint
becomes closer to the sensor and therefore becomes the reference point. As seen in
Figure 4.17c, the lateral vector reverses direction. During the process of associating
the detected objects and properly updating the motion history of tracks, the stored
reference vector is compared with the current one. If the two vectors point in opposite
directions, the reference point will be changed to the other corner. If the turning
continues, the right side of the object will appear, as depicted in Figure 4.17d. Now
we just compare longitudinal and lateral vectors separately and change the reference
point accordingly.

4.6 Tracking

As briefly mentioned in subsection 4.5.2, there are several variations of cluster-track
assignments: a cluster without a track, a track and exactly one cluster, a track and
multiple clusters, multiple tracks and just one cluster, or a track without a cluster.
How the algorithm handles all these cases is explained in the following subsections.

4.6.1 Track Creation

If there is a cluster which qualifies as a vehicle and is therefore desirable to track, a
new track should be created. Our algorithm starts observing every cluster classified
as an “L” and every H-cluster in front of us. This “observing”, however, serves as a
pre-tracking in order to detect objects which not only look like but also behave like a
road vehicle. After three scans we start checking properties of these objects including
speed, orientation, and extracted features. If they pass the test, the observed objects
are transformed into tracks. To avoid conflicts, all non-track objects are still tracked
in the background.

4.6.2 Track Update

Once a vehicle is tracked and it is assigned exactly one cluster after a new scan, its
history is updated with this one cluster.

41

4 Tracking Algorithm

�8 �6 �4

16

18

20

22

x [m]

y
[m

]

(a) L-shaped cluster
at first point in
time steering to
the right. The
reference point
is the lower left
corner.

�8 �6 �4

16

18

20

22

x [m]

y
[m

]

(b) Same object a few
scans later. Due to
the change of the
angle only the rear
of the car is visi-
ble. The reference
point is still the left
point.

�8 �6 �4

16

18

20

22

x [m]

y
[m

]

(c) The same object
a few scans later.
Due to the change
of orientation the
reference point
shifted to the
right point of the
H-cluster.

�8 �6 �4

16

18

20

22

x [m]

y
[m

]

(d) After a few scans,
the right side
of the vehicle is
visible and the
reference point is
again a corner, but
this time the lower
right one.

Figure 4.16: Change of perspective leads to change of reference points.

(a) L-shaped cluster
with reference
point and the re-
spective vectors.

(b) H-cluster with
reference point
and the respec-
tive vector which
is the same as in
(a).

(c) H-cluster with
changed ref-
erence point
and reversed
reference vector.

(d) Mirrored L-
shaped cluster
with reference
point at another
corner and
the respective
vectors.

Figure 4.17: Schematic depiction of Figure 4.16. The arrows show the vectors starting
at the reference point and pointing towards the sides of the object for H-
and L-clusters.

42

4 Tracking Algorithm

4.6.3 Ambiguity Handling

In the case of a track and multiple clusters or multiple clusters assigned to one track,
we update a track with the cluster which is closest to its predicted position and
adapt the other cluster-track assignments accordingly. If there is an ambiguity, we
determine all clusters which are assigned to the currently considered track or all
tracks which are assigned to the currently examined cluster. We then predict the
future position of the tracks and compare those positions with the cluster positions.
The combination with the smallest distance will be preserved. That means that if a
track was assigned multiple clusters, it will be assigned to the closest one. When
multiple tracks are assigned to the same cluster, the cluster will be assigned to the
track with the closest prediction and it will be removed from the list of assigned
clusters of the other tracks. All tracks must go through a new track management
iteration. One track will be updated and the others might be updated or handled
differently depending on the number of remaining assigned clusters.

4.6.4 Track Deletion

It may also happen that a LRF does not recognize an object where the prediction
expects one. This can occur for several reasons. In the case that no cluster is assigned
to a certain track, the Kalman filter takes over and predicts its position for several
frames if the track fulfills two requirements: The STDs of the orientation and heading
of the last three scans have to be within a certain threshold. If it is impossible to
recover the track for a certain amount of time, the track will be deleted. This time
range amounts to one second for tracks and 0.2 seconds for non-track objects. If
a track moves in the opposite direction of the ego-vehicle and already passed it, it
won’t be predicted any further to reduce the number of false negatives (FNs).

43

5 Evaluation

In order to evaluate to what extent the implemented algorithm performs successfully,
we test it in different ways. Before showing the results, we want to describe how the
testing works and what specific quality metrics we are using.

5.1 Methodology

We want to test tracking-related properties and other qualities we focused on. For
tracking-related quality evaluation, we use labeled data as ground truth (GT) and for
the other measures, we use special scenarios.

5.1.1 Labeled Data as Ground Truth

Obtaining real ground truth for LIDAR data which are generated by a moving
platform with moving obstacles is practically impossible. That is the reason why
measured data is annotated with the type and position of objects the sensor, whether
it is a camera, a LRF, or another sensor, should detect. We labeled some scans of our
obtained data by ourselves and used the KITTI Vision Benchmark Suite [43] as our
ground truth. However, at this point, we want to mention that the used annotation
software and the annotator influence the annotation quality, which again has an
influence of the evaluation result [44].

Own Labeled Data

We took 30 scans of our data and labeled every cluster by deciding whether it is a
vehicle or not and we gave every vehicle a unique id to enable track-based quality
evaluation. During these scans, the ego-vehicle is driving on a straight road and the
LRFs are able to detect several vehicles of the oncoming traffic (Figure 5.1).

44

5 Evaluation

�20 �10 0 10 20
�10

0

10

20

30

40

x [m]

y
[m

]

(a) Labeled LIDAR data. (b) Camera picture of labeled scene.

Figure 5.1: Own labeled data. (a) LIDAR points of one of the labeled cycles and (b)
camera picture of the same cycle.

The KITTI Vision Benchmark Suite

Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago
teamed up to create the KITTI Vision Benchmark Suite [43]. It is a comprehensive
collection of several kinds of data and annotations including different kinds of vehicles
and pedestrians. For benchmarking purposes they provide annotated training data
sets and test sets without labels. Despite the project being vision-based, it also
provides 3D LIDAR data. Since we need 2D data, we need to adapt the data set. To
simulate 2D data points, we determined a coordinate on the vertical axis which is
approximately at the same level where road vehicles are (the used LRF is mounted
on the top of the car). We then took all points which are a bit above and below this
coordinate and removed the rest. This reduced data set serves us as a 2D LIDAR
data set.

5.1.2 Special Scenarios

The second part of the evaluation is about three properties of the tracking algorithm:
First, tracking velocity, second, handling of changing view point, and third, occlusion
handling.

45

5 Evaluation

Scenario 1 - Velocity

Usually, the ego-vehicle does not know the velocity of other traffic participants. A
Kalman filter, described in subsection 4.5.1, tracks position and velocity. In order
to test this velocity estimation, the ego-vehicle drives towards another, still, vehicle.
If we fix the position of the ego-vehicle afterwards, it seems like the other vehicle
is moving and we can compare the estimated velocity from the Kalman filter with
the known velocity of the ego-vehicle. Since the Kalman filter is initialized with a
velocity of zero, it will take a short moment until the estimated velocity will match
the real one.

Scenario 2 - Changing Viewing Angle

The second scenario tests the handling of a changing viewpoint described in subsec-
tion 4.5.3. For that, the ego-vehicle drives around another still vehicle. This way, all
four sites and corners come into view.

Scenario 3 - Occlusion

One important property of a tracking algorithm is to overcome short sequences
without measurements, for instance caused by occlusion. To test the prediction
capability of the Kalman filter, the ego-vehicle stands still and points towards another
still vehicle a few meters away. A third vehicle drives laterally to the ego-vehicle
beyond the second one. Shortly after it reaches the second car, it will be occluded and
the LRFs should not be able to detect it. During that time, the Kalman filter should
predict the movement such that the prediction and the re-appearing car will match a
few scans later.

5.2 Quality Metrics

In order to evaluate the quality of the tracking algorithm with labeled data, we use two
kinds of metrics: frame-based and track-based metrics. The frame-based metrics used
are the CLEARMOT [45] and the track-based are the mostly tracked (MT)/partially
tracked (PT)/mostly lost (ML) metrics [46].

46

5 Evaluation

5.2.1 Frame-Based Quality Metrics

The multiple object tracking (MOT) metrics are MOT accuracy (MOTA) and MOT
precision (MOTP). MOTA takes all errors, i.e., false positives (FPs), false negatives
(FNs), and id switches (IDs), into account. Since the metric subtracts the number of
errors relative to the number of GT objects, the MOTA value might be negative. It is
calculated as follows:

MOTA = 1 � Ât(FP(t) + FN(t) + ID(t))
Ât NGT(t)

, (5.1)

with t being an index indicating a cycle. MOTP measures how well a tracker localizes
other objects. It averages the distance between GT and hypotheses (Hs) over all
matched pairs. In 2D, it represents the average overlap of matched bounding boxes:

MOTP =
Ât,i d̄(GTt

i , Ht
g(i))

Ât mt
, (5.2)

with d̄ being the distance function, m being the number of matches, and i being an
index indicating a cluster.

5.2.2 Track-Based Quality Metrics

As opposed to the CLEARMOT metrics, the MT-, PT-, and ML-metrics take the whole
track into account. They classify a track into three categories, like their names (“mostly
tracked”, “partially tracked”, “mostly lost”) suggest, depending on the amount of the
calculated track which is consistent with the annotated track (Table 5.1). In addition to

Table 5.1: MT/PT/ML metrics and their definition
ML PT MT

Percentage of track
< 20 % � 20 % and < 80 % � 80 %compliant with GT

these three values, how many times a track was lost, which is called fragments (FM),
is often added.

47

5 Evaluation

5.3 Results

Subsequently, we present the results of the aforementioned tests.

5.3.1 Labeled Data as Ground Truth

First, we show the results of our own labeled data in three tables showing MOTA,
MOTP, and the MT/PT/ML-metrics respectively. Second, we summarize all relevant
information of all 21 KITTI training data sets in one table.

Own Labeled Data

Table 5.2 contains all relevant data regarding the MOTA metric. For comparison
with other methods, only the first row is of interest. For better analysis, we split the
metrics by track/non-track and type of classes depicted in the rows below.

Table 5.2: MOTA of own labeled data.
MOTA FP FN ID TP TN Num of objects

All 0.8741 0 92 0 53 586 731
Track 0.3655 0 92 0 53 0 145

No track 1.0000 0 0 0 0 586 586
L 0.5686 0 44 0 11 47 102
H 0.8790 0 15 0 24 85 124
V 0.9553 0 11 0 16 219 246
C 0.8750 0 2 0 2 12 16
U 0.5556 0 4 0 0 5 9
O 0.9316 0 16 0 0 218 234

Table 5.3 summarizes all data regarding the MOTP. Since MOTP is used as a
relative value, the mean of the second row of the table can be used for comparison.
We distinguished track from no-track objects and all class types as well and added
absolute values in meter and the maximum and minimum occurring values for better
analysis. The relative values range between zero and 100 percent.

Table 5.4 shows the MT/PT/ML metrics. We listed every single track and its
percentage. The last row depicts the actual MT/PT/ML metrics for all objects and all
cycles. For FM, the last but one row shows the final result.

48

5 Evaluation

Table 5.3: MOTP of own labeled data.
Mean Max Min

All absolute [m] 0.4766 14.7479 0.0001
relative [%] 56.28 99.96 0.00

Track absolute [m] 0.1904 1.1320 0.0004
relative [%] 63.85 99.65 2.43

No track absolute [m] 0.5650 14.7479 0.0001
relative [%] 53.94 99.96 0.00

L absolute [m] 0.2595 2.9949 0.0054
relative [%] 86.33 99.69 0.00

H absolute [m] 0.2500 1.3296 0.0004
relative [%] 37.95 99.89 0.00

V absolute [m] 0.8057 14.7479 0.0009
relative [%] 43.27 99.72 0.00

C absolute [m] 0.0827 0.2327 0.0014
relative [%] 87.89 99.56 63.67

U absolute [m] 0.5522 1.3427 0.0877
relative [%] 74.27 93.54 59.15

O absolute [m] 0.1023 2.3281 0.0001
relative [%] 82.23 99.96 18.42

The KITTI Vision Benchmark Suite

Table 5.5 contains all relevant information of both CLEARMOT and MT/PT/ML
metrics. In addition, the table contains the recall. This value describes the relative
amount of true positives (TPs) of all objects that should be TPs. In other words:

Recall =
TP

TP + FN
(5.3)

49

5 Evaluation

Table 5.4: MT, PT, ML, and FM of own labeled data.
MT [%] PT [%] ML [%] FM

1 96.67 - - 1
2 100.00 - - 0
3 100.00 - - 0
4 89.29 - - 1
5 100.00 - - 0
6 100.00 - - 0
7 - 66.67 - 1
8 100.00 - - 0
9 100.00 - - 0
10 - 71.43 - 1
11 - 63.64 - 1
12 - 69.57 - 1
13 100.00 - - 0
14 100.00 - - 0
15 - 60.00 - 1
16 - 50.00 - 1
17 - 33.33 - 1
18 - 33.33 - 1
19 - 50.00 - 1
20 - 31.25 - 1
21 100.00 - - 0
22 - 71.43 - 1
23 - 33.33 - 1
S 11 12 0 14
% 47.83 52.17 0.00 -

50

5
Evaluation

Table 5.5: CLEARMOT and MT/PT/ML metrics of all KITTI training data sets.
Training data set MOTA MOTP Recall MT PT ML TP FP FN ID FM

0000 -1.3070 0.6687 0.3042 0.0000 0.3333 0.6667 73 329 167 0 2
0001 -0.1451 0.6153 0.0322 0.0000 0.0460 0.9540 75 407 2253 0 2
0002 -0.0800 0.6592 0.0228 0.0000 0.0667 0.9333 23 96 984 0 0
0003 -0.3533 0.5432 0.0689 0.0000 0.0000 1.0000 23 141 311 0 5
0004 -0.3914 0.5762 0.0091 0.0000 0.0000 1.0000 7 308 762 0 0
0005 -0.1139 0.6387 0.0033 0.0000 0.0000 1.0000 4 142 1208 0 0
0006 -0.6986 0.6029 0.1336 0.0000 0.3636 0.6364 68 408 441 2 7
0007 -0.2524 0.6418 0.0855 0.0000 0.0943 0.9057 169 658 1808 0 4
0008 -0.1052 0.5361 0.0020 0.0000 0.0000 1.0000 2 109 1015 0 0
0009 -0.1709 0.6146 0.0205 0.0000 0.0380 0.9620 51 471 2434 0 1
0010 -0.3046 0.5190 0.0017 0.0000 0.0000 1.0000 1 178 580 0 0
0011 -0.1626 0.6082 0.0481 0.0000 0.0392 0.9608 138 605 2734 0 9
0012 -0.8671 0.6087 0.0490 0.0000 0.0000 1.0000 7 131 136 0 1
0013 -23.2400 0.5240 0.2188 0.0000 0.0000 1.0000 7 581 25 0 0
0014 -0.2421 0.6071 0.0363 0.0000 0.1429 0.8571 15 115 398 0 2
0015 -1.1552 0.5882 0.0229 0.0000 0.0000 1.0000 13 668 554 0 0
0016 -0.4390 Inf 0.0000 0.0000 0.0000 1.0000 0 367 836 0 0
0017 -Inf Inf 0.0000 0.0000 0.0000 0.0000 0 460 0 0 0
0018 -0.4131 0.5987 0.1453 0.0000 0.1111 0.8889 178 684 1047 0 8
0019 -3.5096 0.5891 0.1330 0.0000 0.5000 0.5000 112 3031 730 0 7
0020 -0.1015 0.6420 0.0957 0.0093 0.0935 0.8972 473 969 4470 0 12

51

5 Evaluation

5.3.2 Special Scenarios

In the following subsections, we present the results of scenario 1 as graphs and the
results of scenario 2 and 3 as snapshots of specific and interesting moments.

Scenario 1 - Velocity

Figure 5.2 depicts two graphs. The first one shows the velocity of the ego-vehicle and
the velocity estimation of the Kalman filter. The second one shows the difference
between the two of them.

0 50 100

0

2

cycle

v
(m

/s
)

(a) GT velocity (red) and velocity estimated by
Kalman filter (blue).

0 50 100

0

2

cycle

er
ro

r
(m

/s
)

(b) Difference of GT and estimated velocity.

Figure 5.2: Results of Scenario 1: (a) GT velocity, estimated velocity, and (b) the
difference between them.

Scenario 2 - Changing Viewing Angle

Figure 5.3 and Figure 5.4 show some key moments as the ego-vehicle drives away
from the other car and returns to it. The figures show how the other car is detected
and where the detected and adapted reference points are. The red triangle in the
figures marks the reference point as it is detected. The blue triangle marks the
reference point after a possible adaptation.

52

5 Evaluation

(a) Cycle 30. Detecting the vehicle. (b) Cycle 70. Detecting the vehicle from an-
other view.

(c) Cycle 80. Changing the reference point. (d) Cycle 140. The other vehicle appears as a
line.

Figure 5.3: Results of Scenario 2: Interesting moments during the first part of the
scene. Detecting the vehicle and adapting the reference point. The red
triangle marks the reference point as it is detected. The blue triangle
marks the reference point after a possible change.

Scenario 3 - Occlusion

Figure 5.5 shows the beginning of the scene, the moment the car is fully occluded,
the moment it reappears, and the end of the scene.

53

5 Evaluation

(a) Cycle 149. Adapting the reference point. (b) Cycle 154. Changing the reference point
and orientation of the detected vehicle.

(c) Cycle 310. Detection of an oddly shaped
cluster as vehicle.

(d) Cycle 394. Detection of two clusters of the
same object.

Figure 5.4: Results of Scenario 2: Interesting moments during the second part of the
scene: Adapting and changing the reference point, detecting clusters. The
red triangle marks the reference point as it is detected. The blue triangle
marks the reference point after a possible change.

5.3.3 Time Consumption

Table 5.6 shows the averaged time consumption of the algorithm on an Intel Core
i7-4702MQ CPU at 2.20 GHz with 7.7 GiB memory for different data sets. The first
two rows show the amount of points before and after cropping and the duration of
the algorithm per 1,000 points. The last rows show the absolute and relative duration
of each step of the algorithm. The last row shows the value for the whole algorithm.

54

5 Evaluation

(a) Cycle 40. Beginning of the scene. (b) Cycle 60. Vehicle is fully occluded.

(c) Cycle 70. Vehicle reappears. (d) Cycle 80. End of the scene.

Figure 5.5: Results of Scenario 3: Key moments of this scenario. The vehicle drives be-
hind an obstacle, is fully occluded while driving behind it, and reappears
later.

55

5
Evaluation

Table 5.6: Time consumption of algorithm with different data sets.
KITTI 0000 (151 cycles) KITTI 0007 (800 cycles) IBEO (151 cycles)
Amount Duration Amount Duration Amount Duration

Average Points 4694.5629 0.7077 s
k points 3352.8300 0.6280 s

k points 1349.6623 3.5823 s
kpoints

Cropped Points 3853.1788 0.8623 s
k points 2929.5763 0.7188 s

k points 955.5762 5.0596 s
kpoints

Absolute Relative Absolute Relative Absolute Relative
Coord. Transform 0.0003 s 0.0079 % 0.0003 s 0.0120 % 0.0002 s 0.0047 %
Bounding Points 0.0005 s 0.0143 % 0.0004 s 0.0196 % 0.0004 s 0.0075 %
Segmentation 0.8920 s 26.8467 % 0.4068 s 19.3183 % 0.0694 s 1.4350 %
Classification 0.6367 s 19.1637 % 0.4159 s 19.7501 % 0.2672 s 5.5271 %
Postprocessing 0.9721 s 29.2586 % 0.6487 s 30.8083 % 0.9161 s 18.9486 %Classification
Feature Extraction 0.1367 s 4.1137 % 0.1018 s 4.8353 % 0.2341 s 4.8424 %
Postprocessing 0.2358 s 7.0975 % 0.1710 s 8.1189 % 1.4289 s 29.5532 %Feature Extraction
Association/Tracking 0.4484 s 13.4975 % 0.3609 s 17.1375 % 1.9185 s 39.6815 %
All 3.3224 s 100 % 2.1057 s 100 % 4.8349 s 100 %

56

6 Discussion

In this section, we want to discuss the test results by analyzing them and their meaning
for the performance of the tracking algorithm. Afterwards, we will mention possible
sources of errors and weaknesses of the algorithm and discuss time consumption.

6.1 Discussing the Results

The goal of this thesis was to develop a 2D LIDAR tracking algorithm that ideally
performs as good as a 3D LIDAR tracking algorithm. Now, we discuss the evaluation
parts separately and analyze how the algorithm performed.

6.1.1 Own Labeled Data

Table 5.2 shows MOTA and related values of the evaluation with own labeled data.
The overall MOTA is 0.8741, which is a good value. We split the accuracy by classes
and by objects the algorithms is supposed to track (TP, “Track”) and objects the
algorithms is not supposed to track (true negative (TN), “No track”) for better
analysis. The MOTA for “tracks” is 0.3655 and therefore only around 40 percent of
the overall MOTA. This value could be better and out of all 145 objects, that should
be tracked, only 53 were detected. In contrast to that bad ratio, the algorithm detected
zero FPs. Almost two thirds missing targets and no FP might be indicators for too
strict track creation criteria. We introduced those criteria to reduce the number of
FPs. In order to demonstrate the effect of those criteria, we performed the evaluation
without them. Table 6.1 shows the results. Without track creation criteria, the
algorithm causes 94 FPs but only 30 missing targets and therefore a “track” MOTA
of 0.7931 (with an overall MOTA of 0.8235). It seems like the algorithm is capable of
detecting a large amount of objects to be tracked but causes a significant amount of
FPs without track creation criteria.

57

6 Discussion

Table 6.1: MOTA of own labeled data without track creation criteria.
MOTA FP FN ID TP TN Num of objects

All 0.8235 94 30 5 115 492 731
Track 0.7931 0 30 0 115 0 145

No track 0.8311 94 0 5 0 492 586
L 0.5980 41 0 0 55 6 102
H 0.7581 21 7 2 32 64 124
V 0.8862 21 5 2 22 198 246
C 0.3125 9 1 1 3 3 16
U 0.6667 2 1 0 3 3 9
O 0.9316 0 16 0 0 218 234

Table 5.3 shows MOTP and related values. For better analysis, we split up all objects
by “track”/“no track” objects and by classes as well. The overall MOTP is 56.28
percent, “track” MOTP is 63.85 percent, and the MOTP of L-shaped, C-, U-shaped,
and O-clusters range between 74.27 and 87.89 percent. H- and V-clusters obtain
the lowest values with 37.95 and 43.27 percent. Except for H- and V-clusters, the
algorithm performs with a good MOTP. However, the absolute MOTP of L-shaped
clusters is on average 25.95 centimeters and the absolute MOTP of H-clusters is 25.00
centimeters. The reason for low MOTP for H- and V- clusters might be that the area
of the bounding box is significantly smaller compared to that of L-shaped, C-, or
U-shaped clusters. The maximum of 14 meters occurred at a V- and “no track”-cluster.
Such a large value is an outlier and it might be caused by an exterior wall of a
building.

Table 5.4 shows MT/PT/ML metrics and the number of FMs. Our algorithm tracks
47.83 percent of all objects to be tracked more than 80 percent of the time, which
represents a good but still improvable performance. That no object was tracked
less than 20 percent is a good sign. However, it is noticeable that every partially
tracked object has exactly one fragment. A small amount of FMs is good but it could
also mean that the Kalman filter is not (or rarely) capable of resuming a track with
prediction once a track is lost.

58

6 Discussion

6.1.2 The KITTI Vision Benchmark Suite

In contrast to the more or less good performance of the own labeled data, all MOTA
values of the KITTI data set are negative, which means that there are more errors than
ground truth objects. This is mostly caused by a large amount of FPs. The recall is
often around ten percent, once 30.42, once 21.88, but mostly less than five percent. As
already mentioned, all training data sets show numerous FPs. Since the KITTI data
set shows similar recall and FP values as the own labeled data, we tested all KITTI
training data sets without track creation criteria as well. Table 6.2 shows these results.
The MOTA is worse, the recall increases to a maximum of 46.86 percent and to some
values around 20 percent but it is still too bad to be considered good. The KITTI
training data sets show that the track creation criteria not only affect the amount of
FPs but also the amount of TPs and it shows that it is harder to detect all objects
compared to our own labeled data.

The MOTP is around 55 to 60 percent and, therefore, similar to the MOTP of our
own labeled data.

The MT/PT/ML metrics are also different to those of the own labeled data. Almost
every time, 0.00 percent of all objects were tracked most of the time. PT values
fluctuate between zero, some around five, some around ten, and very few even
around 30, 40, and 50 percent. However, most of all data sets show 80 and more
percent of all tracks as mostly lost (ML).

It is noticeable, that the performance of the algorithm on the KITTI data sets is
significantly worse than the performance on the own labeled data regarding MOTA
and MT/PT/ML. Possible reasons are discussed in section 6.2. It shows a similar
performance in MOTP. Nonetheless, the KITTI data sets again show that it is hard to
distinguish between FPs and TPs.

59

6
D

iscussion

Table 6.2: CLEARMOT and MT/PT/ML metrics of all KITTI training data sets without track creation criteria.
Training data set MOTA MOTP Recall MT PT ML TP FP FN ID FM

0000 -4.2698 0.6535 0.4686 0.0000 0.4444 0.5556 127 989 144 0 6
0001 -0.9750 0.6258 0.0932 0.0000 0.1149 0.8851 219 2457 2131 0 14
0002 -0.7330 0.6438 0.0668 0.0000 0.1333 0.8667 68 782 950 1 6
0003 -1.1048 0.5445 0.1138 0.0000 0.2500 0.7500 38 407 296 0 5
0004 -1.0728 0.6379 0.0583 0.0000 0.1154 0.8846 45 865 727 2 6
0005 -1.0264 0.5940 0.0479 0.0000 0.0303 0.9697 58 1301 1154 1 8
0006 -1.1577 0.6034 0.1984 0.0000 0.4545 0.5455 101 671 408 2 9
0007 -1.5190 0.6188 0.2138 0.0000 0.4906 0.5094 425 3393 1563 4 36
0008 -0.8466 0.6120 0.0166 0.0000 0.0000 1.0000 17 873 1005 0 1
0009 -0.7759 0.6078 0.0818 0.0000 0.1013 0.8987 204 2115 2289 2 18
0010 -1.2806 0.6747 0.0551 0.0000 0.0000 1.0000 32 776 549 0 4
0011 -0.4889 0.6086 0.1059 0.0000 0.1176 0.8824 305 1691 2574 11 32
0012 -1.4056 0.6087 0.0490 0.0000 0.0000 1.0000 7 208 136 0 1
0013 -88.9200 0.5370 0.2857 0.0000 0.0000 1.0000 10 2223 25 0 0
0014 -1.1090 0.5802 0.0760 0.0000 0.1429 0.8571 32 482 389 0 2
0015 -2.3298 0.5679 0.0370 0.0000 0.1111 0.8889 21 1342 546 0 1
0016 -0.9043 Inf 0.0000 0.0000 0.0000 1.0000 0 756 836 0 0
0017 -Inf Inf 0.0000 0.0000 0.0000 0.0000 0 1435 0 0 0
0018 -3.0351 0.5909 0.1878 0.0000 0.1667 0.8333 231 3940 999 4 16
0019 -13.7470 0.5879 0.1866 0.1667 0.3333 0.5000 159 11606 693 0 14
0020 -0.4563 0.6311 0.1312 0.0093 0.1963 0.7944 649 2894 4296 1 32

60

6 Discussion

Table 6.3 shows all methods which ran the KITTI test data sets and were submitted
online. A lot of them are anonymous submissions and most methods are vision-
based. As expected, MOTA, MT, and ML values are better than ours. Our ID and
FM are significantly smaller, which is per se good. Given the fact that our other
quality metrics show a bad performance and the amount of ML tracks is large, the
two metrics do not indicate a good performance either. The only metric which is
good and comparable to other methods is MOTP although it is worse than all other
methods.

6.1.3 Scenario 1 - Velocity

Figure 5.2 shows the velocity of ground truth and Kalman filter and the difference
between them. One of the first values seems to be totally off because the estimated
velocity is significantly larger than the ground truth. Figure 6.1a shows these two
velocities and the calculated average velocity between two scans, Figure 6.1b shows
the same data but better scaled. Figure 6.1a confirms the hypothesis because one of
the first values is around 80 m

s while the others being mostly less than 20 m
s . However, a

Kalman filter naturally needs some time to adapt to the real value. After 20 cycles, the
Kalman filter shows a good estimation for the ground truth velocity. In general, the
estimated velocity seems to be shifted to the right or down. After a large deceleration
at approximately cycle 85, the Kalman filter shows a slow response. Due to the
adjustment in the beginning and the slow response in the end, the difference between
ground truth and estimated velocity is at its highest values in the beginning and the
end.

6.1.4 Scenario 2 - Changing Viewing Angle

Figure 6.2a shows the first cycle of scenario 2. We would have expected an L-shaped
cluster but the scan shows one thick and one thin line. After some cycles, the
algorithm is capable of detecting the vehicle and recognizing the rear left corner as
reference point (Figure 5.3a). At cycle 80, the perspective of the ego-vehicle and the
shape of the standing car are changing. Here, also the reference point changes to the
rear right corner. However, since the perceived orientation of the car also changes, the
reference point relative to the received car is still in the rear left corner (Figure 5.3c).
Some cycles later, the shape of the car looks like one line (for example in Figure 5.3d).

61

6 Discussion

Table 6.3: Methods and results published on the KITTI website [47]
Method MOTA MOTP MT ML ID FM
IMMDP 75.37 % 82.74 % 60.37 % 10.82 % 178 382
TuSimple 73.20 % 83.97 % 71.65 % 7.01 % 300 515
wan 72.99 % 82.83 % 50.61 % 12.20 % 24 248
MCMOT-CPD 72.11 % 82.13 % 52.13 % 11.43 % 233 547
RBPF 71.44 % 82.25 % 63.87 % 5.49 % 284 673
DuEye 70.15 % 83.52 % 60.98 % 5.49 % 402 1043
NOMT* 69.73 % 79.46 % 56.25 % 12.96 % 36 225
CCF-MOT 69.46 % 78.36 % 52.29 % 13.11 % 72 408
MDP 69.35 % 82.10 % 51.37 % 13.11 % 135 401
DSM 68.66 % 84.39 % 41.46 % 15.40 % 29 418
NOMT-HM* 67.92 % 80.02 % 49.24 % 13.11 % 109 371
SLP* 67.36 % 78.79 % 53.81 % 9.45 % 65 574
SCEA* 67.11 % 79.39 % 52.13 % 10.98 % 106 466
LP-SSVM* 66.35 % 77.80 % 55.95 % 8.23 % 63 558
mbodSSP* 62.64 % 78.75 % 48.02 % 8.69 % 116 884
SSP* 60.84 % 78.55 % 53.81 % 7.93 % 191 966
NOMT 55.87 % 78.17 % 39.94 % 25.46 % 13 154
DCO-X* 55.49 % 78.85 % 36.74 % 14.02 % 323 984
ODAMOT 54.87 % 75.45 % 26.37 % 15.09 % 403 1298
NOMT-HM 53.03 % 78.65 % 33.23 % 27.13 % 28 250
RMOT* 53.03 % 75.42 % 39.48 % 10.06 % 215 742
LP-SSVM 51.80 % 76.93 % 35.06 % 21.49 % 16 430
SCEA 51.30 % 78.84 % 26.22 % 26.22 % 17 468
SSP 50.42 % 77.64 % 28.66 % 24.09 % 7 714
DBHM* 49.63 % 77.72 % 52.13 % 7.47 % 1632 2144
TBD 49.52 % 78.35 % 20.27 % 32.16 % 31 535
TDCS 49.25 % 75.20 % 23.02 % 21.34 % 126 991
mbodSSP 48.00 % 77.52 % 22.10 % 27.44 % 0 704
RMOT 46.63 % 75.18 % 20.43 % 31.40 % 51 382
CEM 44.31 % 77.11 % 19.51 % 31.40 % 125 398
MCF 43.17 % 78.25 % 14.33 % 37.04 % 23 589
HM 41.47 % 78.34 % 11.59 % 39.33 % 12 576
FMMOVT V2 37.46 % 80.05 % 20.27 % 30.79 % 588 1132
DP-MCF 35.72 % 78.41 % 16.92 % 35.67 % 2738 3239
FMMOVT 29.11 % 77.68 % 21.19 % 34.60 % 514 940
DCO 28.72 % 74.36 % 15.24 % 30.79 % 223 622

62

6 Discussion

0 50 100
0

20

40

60

80

(a) GT velocity (red), velocity estimated by KF
(blue), and the calculated average velocity
between two cycles (yellow).

0 50 100
0

10

20

(b) Same data as in (6.1a) but scaled differ-
ently.

Figure 6.1: Scenario 1: GT, estimated, and average velocity between two cycles in two
different scales.

Figure 5.4a shows the desired behavior when the reference point changes. The
received reference point (red triangle) does not comply with the memorized reference
point and is adjusted accordingly (blue triangle). Just a few cycles later, at cycle 154
(Figure 5.4b), the perceived orientation (and location) of the car changes again and the
global reference point is now the front right corner. Relative to the car’s orientation, it
is still the rear left corner. During the next cycles, cycle 222, 232, and 237 are depicted
in Figure 6.2, detection of the other car completely fails due to blind spots in the
ego-vehicles vicinity (see also Figure 3.2b) and, as a result, oddly shaped clusters.
During these cycles, testing is barely possible. For example the other car is, contrary
to expectations, represented as two line-shaped clusters or as a P-shaped cluster
as depicted in Figure 6.2e. In the end of the scenario, in cycle 310 and depicted in
Figure 5.4c, the detection adaptation of the reference point works correctly. However,
in the last cycles, cycle 394 is depicted in Figure 5.4d, the detection is completely
wrong and two lines of the other car are detected as two separate objects.

In order to sum up, the cycles were not perfect for testing the method for changing
the reference point. However, during the sequences which were qualified for testing,
we conclude that the algorithm is capable to adapt the reference point if the orientation
of the car is not changing. As soon as the perceived orientation changes, the reference
point changes as well and all future assignments are wrong.

63

6 Discussion

6.1.5 Scenario 3 - Occlusion

Figure 5.5 shows key moments of scenario 3. In the beginning, the detection of all
vehicles is successful (Figure 5.5a). Once the moving vehicle is fully occluded, the
prediction of the Kalman filter is used to complete motion history (Figure 5.5b). The
Kalman filter predicts x- and y-position only with x- and y-velocity. Hence, the motion
is predicted straight and does not work in a curve with the current implementation.
The occluded moving vehicle steers and drives faster than the prediction which can be
seen when the prediction and real object match again in Figure 5.5c. In the following
cycles, the Kalman filter shows a slow response after “catching” the object again
(Figure 5.5d).

6.2 Possible Sources of Errors

With our own labeled data, the algorithm achieves either a good MOTA or a good
recall. It has difficulty distinguishing between FP and TP objects, i.e. non-vehicle
L-shaped clusters are recognized as vehicles. At the current implementation state,
either considering all objects as tracks or choosing certain objects to be tracks causes
one of those two quality metrics to represent a bad performance.

Maybe the most obvious insight after testing with the KITTI dataset is that the
algorithm performed significantly worse compared to own labeled data. It should
be mentioned again that the database is called “The KITTI Vision Benchmark Suite”.
Admittedly, they provide LIDAR data for download but the benchmark is based on
the camera image. The CLEARMOT metrics are also vision-based. Reason for a bad
recall value might be that there are a lot of cars in the KITTI dataset which are far
away (for example the van in Figure 6.3a), that there are a lot of parked and therefore
occluded cars (for example in Figure 6.3c and d), and that there are annotated vehicles
which are not on the street (for example in Figure 6.3d). In addition, in order to
simulate 2D LIDAR data, we cut out a z-slide from all LIDAR data. This does not
represent the same scene scanned with multiple 2D LRFs but is the best estimation.

As clearly seen in scenario 3, the Kalman filter itself is not capable of predicting
a curvature. With x, y, vx, vy, f, and a as state vector, it is possible to predict a
straight movement and the heading but not the movement in the direction of heading.

64

6 Discussion

Further calculations like adapting the movement in heading direction or determining
acceleration out of motion history would enable a prediction of a curvy movement
but are not part of the current implementation.

6.3 Time Consumption

Table 5.6 shows that the average duration of one cycle depends on the data set. Data
set “KITTI 0000” needs 3.3 seconds for 4,695 LIDAR points, “KITTI 0007” needs
2.1 seconds for 3,353 points, and data set “IBEO” 1.9 seconds for 1,349 points. The
more points a scan has the more time the algorithm needs. Dataset “KITTI 0000”
has a similar time per 1,000 points as “KITTI 0007” but on average more points and
therefore needs more time. However, the first 151 cycles of our data set has the
least amount of points in the comparison but takes the longest time. The reason is
that these scans involve more cars and therefore more points the algorithm needs to
process after the classification stage. Every cluster classified as “O” is not processed
after classification. However, independent of the exact composition of the scans,
the algorithm takes too much time. A rule-of-thumb estimation says that a C++
implementation needs a tenth of the time a MATLAB implementation needs, which
would be 0.19 seconds. With a frequency of 12.5 Hz the algorithm needs to run faster
than 1

12.5 Hz = 0.08 s when excecuted online.

65

6 Discussion

(a) Cycle 1. The very first cycle of the scene
shows some oddly shaped cluster.

(b) Cycle 222. Oddly shaped cluster before
blind spot interferes.

(c) Cycle 232. Blind spot causes closes part of
object to be unseen.

(d) Cycle 237. Blind spot splits object in half.

(e) Cycle 270. P-shaped cluster.

Figure 6.2: Scenario 2: Cycles that caused the algorithm to fail. (a) shows the first
cycle and the unexpected cluster shape. (b)-(d) show how blind spots
interfere with clusters. (e) shows an unexpected P-shaped cluster.

66

6 Discussion

(a) Cycle 12 of first KITTI training data set. The van is too far away for the
algorithm to detect it.

(b) Cycle 5 of first KITTI training data set. The same van’s first annotation as
“fully occluded”.

(c) Cycle 126 of first KITTI training data set. Many parked and therefore
occluded cars.

(d) Cycle 44 of second KITTI training data set. Many parked and occluded cars,
some of them are not on the street.

Figure 6.3: Example camera pictures of urban scenes from the first and second KITTI
training data set.

67

7 Conclusion

Finally, we summarize the implemented algorithm, how we tested its performance,
and the test results. We suggest future steps and research and conclude the thesis.

Current technology used to equip vehicles to drive autonomously often includes
3D LRFs which are too expensive to mass-market. That is the reason why this the-
sis describes the attempt to implement a tracking algorithm based on data from
multiple, more affordable, 2D LRFs which ideally achieve a similar performance as
a 3D tracking algorithm. The task has included tracking multiple objects, moving
sensors, real-world data, and coping with related problems. Further, we focused
on reducing over-segmentation and the so-called shape change problem. Our au-
tonomous driving research platform is equipped, among others, with six LRFs and
two GPS sensors of which we used one. After receiving data points, we perform a
coordinate transformation and crop distant points. To identify objects in the scan, we
perform a segmentation. The resulting clusters are classified into one of five classes
according to their geometry. If necessary, we change some classes with help of track
information and, using current geometry information, merge clusters which seem to
belong together. After that and when ideally every cluster represents one object, we
extract features to get stable and meaningful information about each relevant object.
With this information, we can determine spatial magnitudes and rule out objects
which are too small or too large to be a vehicle. All these steps are performed for
every single scan. In order to determine the motion history of an object, we associate
a cluster of a scan with the track respectively the cluster of the previous scan. With
the information from motion history and the new cluster, we try to prevent the shape
change problem by changing the location of our perceived reference point relative to
the object. In addition to all preliminary steps, we implemented a track management
where we decide what objects to track over time, what tracks are updated with what
object in the case of ambiguity, and when to delete tracks whose objects are lost.

68

7 Conclusion

In order to test the performance of our algorithm, we used two groups of quality
metrics: CLEARMOT and MT/PT/ML metrics. We applied these metrics on own
labeled data and on training data sets of the KITTI Vision Benchmark Suite. Velocity
estimation, changing the reference point, and occlusion handling were tested with
specific scenarios. On our own labeled data, the algorithm performed well with a
MOTA of 0.79 without track creation criteria, a MOTP of approximately 60 percent,
and approximately 50 percent mostly tracked tracks. In contrast, the algorithm
performed bad on KITTI data sets: It achieved a negative MOTA, a MOTP of ap-
proximately 60 percent, and zero percent mostly tracked tracks. The first scenario,
testing the velocity estimation, shows that the Kalman filter is able to provide a more
or less good estimation of the velocity of other vehicles but responses slowly after
large velocity changes. Scenario 2, which tests the change of reference point, shows
that our concept works locally but not globally. The last scenario, the occlusion case,
shows that the Kalman filter is able to predict the movement of a fully occluded car
but the current implementation is fragile and does not provide a curvy prediction.

One of the next steps to improve the algorithm could be to implement the algorithm
in for example C++ in order to test the algorithm in real-time. To neglect points which
are not on the road, we cut the scan off at the lateral borders. A better approach
would be to cut the scan off exactly at the road boundary. We attempted to use
OpenStreetMap but those maps do not deliver enough information. One could use
another map or GPS-based solution but since the actual task was to use only LIDAR, a
future endeavor could be to extract road boundaries using only LIDAR like [13], [17],
or [48] did. One great weakness of the algorithm is that it has a hard time detecting
off-road vehicles which was one reason for bad recall values on the KITTI data sets.
Whether a tracking algorithm should be able to detect off-road vehicles is a matter
of its requirements. Our algorithm classifies all those objects based on geometric
features. With enough labeled data, a trained classifier would probably provide a
better performance since all objects are easily distinguishable from each other by
their geometry. However, not all tracking algorithms comprise a classification step.
Because of that and since H- and V-clusters are treated the exact same way, it might
be a good idea to refrain from classification and save that time. As already mentioned
in section 6.2, the KITTI Vision Benchmark Suite is not a LIDAR benchmark. In
order to adequately test and compare LIDAR tracking algorithms, a corresponding
benchmark is needed. One of the very first objectives of this thesis was to only use

69

7 Conclusion

LIDAR information. We then added GPS to the requirements in order to transform
points into world coordinates. To achieve this objective, one solution would be a
compensation of ego-motion to get a “global” representation instead of using the
GPS position of the ego-vehicle. Another idea for future research would be reduction
of under-segmentation. Usually, tracking algorithms try to reduce over-segmentation.
Both alterations affect subsequent steps (mostly classification and later ambiguities
at data association). However, one idea is to adapt the segmentation parameters
and the attempt to improve segmentation results with reduction of over- and under-
segmentation. Using multiple sensors comes with its own peculiarities. Some objects
are seen by multiple sensors from different angles. There are two options how to
process the data: Combining the data and processing all information (like we did) or
processing sensor data separately and combining the information afterwards (like
[11] did, the same applies for one sensor with multiple layers). The authors are not
aware of a comparison or what the advantages and disadvantages of the particular
methods are. Whether one of these or a combination of both methods yields the best
result could be part of future research. However, a LIDAR of exactly one laser beam
shows typical LIDAR characteristics: i.e. the larger the distance to the sensor the
larger the distance between two rays. This fact should also taken into account when
processing scans separately. Another characteristic based on the working principle of
a LRF which is not considered during segmentation is that every point in a scan has
its own timestamp. This affects the scan if an object is moving while it is scanned.
However, noise has probably a larger effect than the object’s movement during one
scan cycle. Since 2D LIDAR scans are rather sparse compared to 3D scans, one could
also overlap multiple scans and perform segmentation and classification on that result.
However, movements during the scans need to be compensated. Our algorithm’s
biggest problem was classifying non-vehicle objects as vehicles and not detecting
vehicle objects that could be clutter, buildings, or off-road objects. To improve the
performance of our algorithm, we suggest not just using spatial but also temporal, and
semantic information (like [24]). Our last suggestion aims at improving ambiguity
handling. Our first two approaches were based on reachable sets and multiple
hypothesis tracking (MHT). Reachable sets include multiple future outcomes we
based our assignments on. MHT uses the measurements as future outcomes and uses
all assignment permutations. We realized that our implementation of the reachable
sets was prone to noise and outliers and that MHT is not well suited for tracking

70

7 Conclusion

inert and easily predictable objects that cars are. Our current solution compares one
prediction (the one given by the Kalman filter) with measurements. We think that
multiple predictions especially in an occlusion case could yield better results.

We conclude that our algorithm did not perform as good as we hoped and worse
than every submitted method tested on the KITTI data sets. The MOTA was either
good or bad depending what labeled data was used for ground truth. If it includes
parked cars and off-road vehicles, MOTA is bad. On the other side, MOTP was stable
60 percent independent of the used data set. This shows that the distinction between
vehicle and other rectangular objects is one of the biggest problems. However, solely
tracking one object including occlusion and velocity estimation works. Our algorithm
for tracking multiple objects with multiple moving 2D LRFs does not reach 3D
performance but has still a lot of potential. The incentive of this thesis was to see how
well a 2D LIDAR tracking algorithm can perform and what deficiencies need to be
remedied. If 2D LRFs will be used in autonomous vehicles, the result of sensor fusion
will be better if much information can already obtained by 2D LIDAR but eventually
its shortcomings will probably be compensated by other types of sensors.

71

Bibliography

[1] David Held, Jesse Levinson, and Sebastian Thrun. Precision Tracking with Sparse
3D and Dense Color 2D Data. In 2013 IEEE International Conference on Robotics and
Automation, pages 1138–1145. IEEE, may 2013. doi: 10.1109/ICRA.2013.6630715.

[2] Michael Darms, Paul Rybski, Christopher R Baker, and Christopher Urmson.
Obstacle Detection and Tracking for the Urban Challenge. IEEE Transactions on
Intelligent Transportation Systems, 10(3):475–485, 2009.

[3] Gary Silberg, Richard Wallace, G Matuszak, J Plessers, C Brower, and D Sub-
ramanian. Self-driving cars: The Next Revolution. White paper, KPMG LLP &
Center of Automotive Research, page 36, 2012.

[4] J.D. Power and Others. US Automotive Emerging Technologies Study. J.D. Power
and Associates, 2014.

[5] Evan Ackerman. Lidar that will make Self-Driving Cars Affordable [News].
IEEE Spectrum, 53(10):14–14, 2016.

[6] Alexander Hars. Driverless car market watch | Gearing up to save lives, reduce
costs, resource consumption, 2017. URL http://www.driverless-future.com/

?page_id=384. [Online; accessed 15 Jan 2017].

[7] MATLAB. version 9.0.0.341360 (R2016a). The MathWorks Inc., Natick, Mas-
sachusetts, United States, 2016.

[8] Erwin Prassler, Jens Scholz, and Alberto Elfes. Tracking Multiple Moving Objects
for Real-Time Robot Navigation. Autonomous Robots, 8(2):105–116, 2000. doi:
10.1023/A:1008997110534.

[9] Chieh-Chih Wang, Charles Thorpe, and Arne Suppe. Ladar-based Detection and
Tracking of Moving Objects from a Ground Vehicle at High Speeds. In Intelligent
Vehicles Symposium, 2003. Proceedings. IEEE, pages 416–421, 2003.

[10] Abel Mendes, Luis Conde Bento, and Urbano Nunes. Multi-Target Detection
and Tracking with a Laser Scanner. In Intelligent Vehicles Symposium, 2004 IEEE,
pages 796–801, 2004.

72

http://www.driverless-future.com/?page_id=384
http://www.driverless-future.com/?page_id=384

Bibliography

[11] Robert MacLachlan and Christoph Mertz. Tracking of Moving Objects from a
Moving Vehicle Using a Scanning Laser Rangefinder. In Intelligent Transportation
Systems 2006, volume 2006, pages 301–306. IEEE, 2006.

[12] Cristiano Premebida, Goncalo Monteiro, Urbano Nunes, and Paulo Peixoto. A
Lidar and Vision-based Approach for Pedestrian and Vehicle Detection and
Tracking. In 2007 IEEE Intelligent Transportation Systems Conference, pages 1044–
1049. IEEE, 2007. doi: 10.1109/ITSC.2007.4357637.

[13] Bin Gao and Benjamin Coifman. A Vehicle Detection and Tracking Approach
Using Probe Vehicle LIDAR Data. In Traffic and Granular Flow’05, pages 675–685.
Springer, 2007.

[14] Christoph Mertz, Luis Ernesto Navarro-Serment, Robert MacLachlan, Paul
Rybski, Aaron Steinfeld, Arne Suppé, Christopher Urmson, Nicolas Vandapel,
Martial Hebert, Chuck Thorpe, David Duggins, and Jay Gowdy. Moving Object
Detection With Laser Scanners. Journal of Field Robotics, 30(1):17–43, 2013.

[15] Geovany Araujo Borges and Marie-José Aldon. A Split-And-Merge Segmentation
Algorithm for Line Extraction in 2D Range Images. In Proceedings 15th Inter-
national Conference on Pattern Recognition. ICPR-2000, volume 1, pages 441–444,
Barcelona, 2000. IEEE Comput. Soc. doi: 10.1109/ICPR.2000.905371.

[16] Geovany Araujo Borges and Marie-José. Aldon. Line Extraction in 2D Range
Images for Mobile Robotics. Journal of intelligent and Robotic Systems, 40(3):
267–297, 2004. doi: 10.1023/B:JINT.0000038945.55712.65.

[17] Jan Sparbert, Klaus Dietmayer, and Daniel Streller. Lane Detection and Street
Type Classification Using Laser Range Images. In Intelligent Transportation
Systems, 2001. Proceedings. 2001 IEEE, pages 454–459, 2001.

[18] Klaus Dietmayer, Jan Sparbert, and Daniel Streller. Model Based Object Classifi-
cation and Tracking in Traffic Scenes from Range Images. In Proceedings of IV
IEEE Intelligent Vehicles Symposium, pages 1–6, 2001.

[19] Martin D Adams. On-line Gradient Based Surface Discontinuity Detection
for Outdoor Scanning Range Sensors. In Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on, pages 1726–1731, 2001.

[20] Sérgio Santos, José Eduardo Faria, Fernando Soares, Rui Araújo, and Urbano
Nunes. Tracking of Multi-Obstacles With Laser Range Data for Autonomous
Vehicles. In Proc. 3rd National Festival of Robotics Scientific Meeting (ROBOTICA),
pages 59–65, 2003.

73

Bibliography

[21] Kenneth Jay Lee. Reactive Navigation for an Outdoor Autonomous Vehicle.
Master’s Thesis, University of Sydney, Sydney, Australia, 2001.

[22] Cristiano Premebida and Urbano Nunes. Segmentation and Geometric Primitives
Extraction From 2d Laser Range Data for Mobile Robot Applications. Technical
report, Instituto de Sistemas de Robótica – Pólo de Coimbra, 2005.

[23] Klaas Klasing, Dirk Wollherr, and Martin Buss. A Clustering Method for Efficient
Segmentation of 3D Laser Data. In ICRA, pages 4043–4048, 2008.

[24] David Held, Devin Guillory, Brice Rebsamen, Sebastian Thrun, and Silvio
Savarese. A Probabilistic Framework for Real-time 3D Segmentation using
Spatial, Temporal, and Semantic Cues. Proceedings of Robotics: Science and Systems,
2016.

[25] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. ACM
Computing Surveys, 31(3):264–323, 1999. doi: 10.1145/331499.331504.

[26] Rui Xu and D. WunschII. Survey of Clustering Algorithms. IEEE Transactions on
Neural Networks, 16(3):645–678, may 2005. doi: 10.1109/TNN.2005.845141.

[27] Stergios I. Roumeliotis and George A Bekey. Segments: A Layered, Dual-Kalman
Filter Algorithm for Indoor Feature Extraction. In Intelligent Robots and Systems,
2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on, pages
454–461, 2000.

[28] Fawzi Nashashibi and Alexandre Bargeton. Laser-Based Vehicles Tracking and
Classification Using Occlusion Reasoning and Confidence Estimation. In 2008
IEEE Intelligent Vehicles Symposium, pages 847–852. IEEE, 2008. doi: 10.1109/IVS.
2008.4621244.

[29] J. Vandorpe, H. Van Brussel, and H. Xu. Exact Dynamic Map Building for A
Mobile Robot Using Geometrical Primitives Produced By A 2D Range Finder. In
Proceedings of IEEE International Conference on Robotics and Automation, volume 1,
pages 901–908. IEEE, 1996. doi: 10.1109/ROBOT.1996.503887.

[30] Junqing Wei, Jarrod M Snider, Junsung Kim, John M Dolan, Raj Rajkumar, and
Bakhtiar Litkouhi. Towards a Viable Autonomous Driving Research Platform. In
Proceedings of the 2013 IEEE Intelligent Vehicles Symposium, pages 763–770. IEEE,
2013.

[31] Applanix Corporation Fact Sheet. POSLV Specifications. Applanix, 2015.

[32] Ibeo Fact Sheet. ibeo LUX (model 2010) - Technical facts... Ibeo Automotive Systems
GmbH, Hamburg, 2010.

74

Bibliography

[33] Ibeo Manual. Operating Manual ibeo LUX 2010 Laserscanner. Ibeo Automotive
Systems GmbH, Hamburg, 2010.

[34] Martin Ester, Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A
Density-Based Algorithm for Discovering Clusters in Large Spatial Databases
With Noise. Kdd, 96(34):226–231, 1996.

[35] Adrien Marie Legendre. Nouvelles méthodes pour la détermination des orbites des
comètes, volume 1. F. Didot, 1805.

[36] Carl Friedrich Gauss. Theoria motus corporum coelestium in sectionibus conicis solem
ambientium auctore Carolo Friderico Gauss. sumtibus Frid. Perthes et IH Besser,
1809.

[37] Francis Galton. Regression Towards Mediocrity in Hereditary Stature. The Journal
of the Anthropological Institute of Great Britain and Ireland, 15:246–263, 1886.

[38] Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. On The Shape
of A Set of Points In The Plane. IEEE Transactions on information theory, 29(4):
551–559, 1983.

[39] R. J. Adcock. A Problem in Least Squares. The Analyst, 5(2):53–54, 1878.

[40] Wayne A. Fuller. Measurement Error Models. John Wiley & Sons, Inc., 1987.

[41] Urs Ramer. An Iterative Procedure for The Polygonal Approximation of Plane
Curves. Computer Graphics and Image Processing, 1(3):244–256, 1972. doi: 10.1016/
S0146-664X(72)80017-0.

[42] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, 82(1):35, 1960. doi: 10.1115/1.3662552.

[43] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are We Ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[44] Anton Milan, Konrad Schindler, and Stefan Roth. Challenges of Ground Truth
Evaluation of Multi-Target Tracking. In 2013 IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 735–742. IEEE, 2013. doi: 10.1109/
CVPRW.2013.111.

[45] Keni Bernardin and Rainer Stiefelhagen. Evaluating Multiple Object Tracking
Performance : The CLEAR MOT Metrics. EURASIP Journal on Image and Video
Processing, 2008(1):1–10, 2008. doi: 10.1155/2008/246309.

75

Bibliography

[46] Yuan Li, Chang Huang, and Ram Nevatia. Learning to Associate: Hybridboosted
Multi-Target Tracker for Crowded Scene. In 2009 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, pages
2953–2960, 2009. doi: 10.1109/CVPRW.2009.5206735.

[47] Andreas Geiger. The KITTI Vision Benchmark Suite, 2017. URL http:

//www.cvlibs.net/datasets/kitti/eval_tracking.php. [Online; accessed 10
Jan 2017].

[48] W.S. Wijesoma, K.R.S. Kodagoda, and A.P. Balasuriya. Road-Boundary Detection
and Tracking Using Ladar Sensing. IEEE Transactions on Robotics and Automation,
20(3):456–464, 2004. doi: 10.1109/TRA.2004.825269.

76

http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php

List of Figures

3.1 Sensor distribution. 12
3.2 Perception system coverage. 12
3.3 Multiple layers and their purpose. 13
3.4 Displacement of the four layers. 14
3.5 Angle resolution. 14
3.6 Points of one LRF reflecting the same object separated by layer. 16
3.7 The points of all four layers of one LRF merged. 17

4.1 Tracking Algorithm. 18
4.2 LIDAR points before and after preprocessing. 19
4.3 LIDAR points before and after segmentation. 21
4.4 Linear and orthogonal regression. 23
4.5 Examples of different classes. 24
4.6 U-shaped cluster which is depicted in Figure 4.5d. 25
4.7 Same cluster after classification and after post-processing. 26
4.8 Merging over-segmented clusters. 28
4.9 Pre-fit algorithm for L-shaped clusters. 31
4.10 Final feature extraction of L-shaped clusters. 32
4.11 Pre-fit algorithm for U-shaped clusters. 33
4.12 Final feature extraction of U-shaped clusters. 34
4.13 Feature extraction of H-, V-, and C-clusters. 35
4.14 Two consecutive scans. 36
4.15 Correspondence problem. 40
4.16 Change of perspective leads to change of reference points. 42
4.17 Schematic depiction of Figure 4.16. 42

5.1 Own labeled data. 45
5.2 Results of Scenario 1 . 52
5.3 Results of Scenario 2. First Part. 53
5.4 Results of Scenario 2. Second Part. 54
5.5 Results of Scenario 3. 55

6.1 Scenario 1: GT, estimated, and average velocity. 63
6.2 Scenario 2: Cycles that caused the algorithm to fail. 66
6.3 Example camera pictures from first and second KITTI data sets. 67

77

List of Tables

2.1 Summary of basic criteria of DATMO papers. 5
2.2 PDBS Methods . 7
2.3 KFBS Methods . 7
2.4 Deficiencies and suggestions for future research of related work 9

3.1 Excerpt of ibeo LUX 2010 Fact Sheet . 13
3.3 Horizontal angular resolution for different sectors for 12.5 Hz frequency 15
3.4 Horizontal angular resolution for different frequencies 15

5.1 MT/PT/ML metrics and their definition 47
5.2 MOTA of own labeled data. 48
5.3 MOTP of own labeled data. 49
5.4 MT, PT, ML, and FM of own labeled data. 50
5.5 CLEARMOT and MT/PT/ML metrics of all KITTI training data sets. . 51
5.6 Time consumption of algorithm with different data sets. 56

6.1 MOTA of own labeled data without track creation criteria. 58
6.2 CLEARMOT and MT/PT/ML metrics of all KITTI training data sets

without track creation criteria. 60
6.3 Methods and results published on the KITTI website 62

78

List of Abbreviations
2D Two-dimensional

3D Three-dimensional

API Application program interface

BB Bounding box

CLEAR Classification of events, activities, and relationships

DARPA Defense Advanced Research Projects Agency

DATMO Detection and tracking of moving objects

DBSCAN Density-based spatial clustering of applications with noise

EKF Extended Kalman filter

FM Fragments

FN False negative

FoV Field of view

FP False positive

GPS Global Positioning System

GT Ground truth

H Hypothesis

ID Id switch

IEPF Iterative end-point fit

IMM Interacting multiple model

k-NN K-nearest neighbor

KF Kalman filter

79

List of Abbreviations

KFBS Kalman-filter-based segmentation

LASER Light amplification by stimulated emission of radiation

LIDAR Light Detection and Ranging

LMS Laser measurement system or laser measurement sensor

LRF Laser range finder

LT Line tracking

MHT Multiple hypothesis tracking

ML Mostly lost

MOT Multiple object tracking

MOTA MOT accuracy

MOTP MOT precision

MT Mostly tracked

OLS Ordinary least squares

PDBS Point-distance-based segmentation

PT Partially tracked

RADAR Radio Detection and Ranging

RBNN Radially bounded nearest neighbor

SLAM Simultaneous localization and mapping

SSR Sum of squared residuals

STD Standard deviation

TN True negative

TP True positive

TTC Time to collision

80

List of Symbols

Lowercase Symbols
a Acceleration

d̄ Distance function

m Number of matches

n Number of data points, number of current scan

r Radius

t Time

u Control vector of Kalman filter

v Velocity

x X-coordinate

x State vector of Kalman filter

y Y-coordinate

Uppercase Symbols

A State transition matrix of Kalman filter

B Control matrix of Kalman filter

D Distance

Dthd Distance threshold

H Observation matrix of Kalman filter

P Probability matrix of Kalman filter

Q Process covariance matrix of Kalman filter

R Measurement covariance matrix of Kalman filter

81

List of Symbols

Greek Symbols

a Y-intercept of regression line, Angular acceleration

b Slope of regression line

d Ratio of variances

e Residual of y-coordinate

h Residual of x-coordinate

w Angular velocity

f Angle

s Variance

D Difference / Change

S Sum

82

	Acknowledgments
	Abstract
	Introduction
	Motivation and Problem Statement
	Objective
	Limitations
	Structure

	Related Work
	DATMO Research
	Segmentation
	Classification
	Feature Extraction
	Deficiencies and Suggestions for Future Research
	Implication

	Autonomous Driving Research Platform
	Autonomous Driving Research Vehicle
	LIDAR Sensors
	Pre-Processing Data Points
	Sensor Fusion
	Deleting Ground Points

	Differences Compared to One One-Layered LRF

	Tracking Algorithm
	Preprocessing
	Segmentation
	Classification Step
	Linear Regression
	Classification
	Post-Processing

	Feature Extraction Step
	Orthogonal Regression
	Feature Extraction
	Post-Processing

	Data Association
	Kalman Filter
	Data Association
	Reference Point and Handling of View Change

	Tracking
	Track Creation
	Track Update
	Ambiguity Handling
	Track Deletion

	Evaluation
	Methodology
	Labeled Data as Ground Truth
	Special Scenarios

	Quality Metrics
	Frame-Based Quality Metrics
	Track-Based Quality Metrics

	Results
	Labeled Data as Ground Truth
	Special Scenarios
	Time Consumption

	Discussion
	Discussing the Results
	Own Labeled Data
	The KITTI Vision Benchmark Suite
	Scenario 1 - Velocity
	Scenario 2 - Changing Viewing Angle
	Scenario 3 - Occlusion

	Possible Sources of Errors
	Time Consumption

	Conclusion
	Bibliography
	List of Abbreviations
	List of Symbols

